Pflügers Archiv

, Volume 350, Issue 2, pp 145–165 | Cite as

Correlation between luminal hydrostatic pressure and proximal tubular fluid reabsorption in the rat kidney

  • J. Schnermann
  • B. Ågerup
  • E. Persson
Article

Summary

Split-drop experiments were performed to evaluate the effect of changes in luminal hydrostatic pressure on net fluid reabsorption in proximal convoluted tubules of the rat kidney. While hydrostatic pressure in control droplets averaged 28.9±1.03 mm Hg, it increased to a mean of 65.2±3.3 mm Hg during pressure elevation and fell to 10.8±1.04 mm Hg during pressure reduction. In paired measurements in identical tubules net fluid absorption changed from a control value of 2.96±0.14 nl/min·mm to 3.88±0.14 nl/min·mm when luminal pressure was elevated. During pressure reduction net fluid absorption fell from a control of 2.98±0.09 nl/min·mm to 2.26±0.13 nl/min·mm (P<0.001). This dependency of fluid absorption upon hydrostatic pressure was not greatly affected by the finding that microphotography overestimated the true intradroplet volume by 31% during control and by 30.2% and 50% during elevated and reduced pressure respectively. From the relation between the changes of net absorption and luminal hydrostatic pressure an apparent hydraulic conductance of 0.04 nl/min·mm Hg was estimated.

Key words

Proximal Tubule Split-Drop Micropuncture Technique Luminal Hydrostatic Pressure Hydraulic Conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aperia, A. C., Broberger, C. G. O., Söderlund, S.: Relationship between renal artery perfusion pressure and tubular sodium reabsorption. Amer. J. Physiol.220, 1205 (1971)Google Scholar
  2. 2.
    Bank, N., Aynedjian, H. S., Wada, T.: Effect of peritubular capillary perfusion rate on proximal sodium reabsorption. Kidney Int.1, 397 (1972).Google Scholar
  3. 3.
    Bank, N., Yarger, W. E., Aynedjian, H. S.: A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction. J. clin. Invest.50, 294 (1971).Google Scholar
  4. 4.
    Brenner, B. M., Troy, J. L.: Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the proximal tubule. J. clin. Invest.50, 336 (1971)Google Scholar
  5. 5.
    Brenner, B. M., Troy, J. L., Daugharty, T. M.: Pressures in the cortical structures of the rat kidney. Amer. J. Physiol.222, 246 (1972)Google Scholar
  6. 6.
    Brunner, F. P., Rector, F. C., Seldin, D. W.: Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J. clin. Invest.45, 603 (1966)Google Scholar
  7. 7.
    Coulter, N. A.: Filtration coefficient of the capillaries of the brain. Amer. J. Physiol.195, 459 (1958)Google Scholar
  8. 8.
    Dresser, T. P., Lynch, R. E., Schneider, E. G., Knox, F. G.: Effect of increases in blood pressure on pressure and reabsorption in the proximal tubule. Amer. J. Physiol.220, 444 (1971)Google Scholar
  9. 9.
    Earley, L. E., Friedler, R. M.: The effects of combined renal vasodilation and pressor agents on renal hemodynamics and the tubular reabsorption of sodium. J. clin. Invest.45, 542 (1966)Google Scholar
  10. 10.
    Fenstermacher, J. D., Johnson, J. A.: Filtration and reflection coefficients of the rabbit blood-brain barrier. Amer. J. Physiol.211, 341 (1966)Google Scholar
  11. 11.
    Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336 (1963)Google Scholar
  12. 12.
    Grandchamp, A., Boulpaep, E. L.: Effect of intraluminal pressure on proximal tubular sodium reabsorption. A shrinking drop micropuncture study. Yale J. Biol. Med.45, 275 (1972)Google Scholar
  13. 13.
    Grantham, J. J., Qualizza, P. B., Welling, L. W.: Influence of serum proteins on net fluid reabsorption of isolated proximal tubules. Kidney Int.2, 66 (1972)Google Scholar
  14. 14.
    Koch, K. M., Aynedjian, H. S., Bank, N.: Effect of acute hypertension on sodium reabsorption by the proximal tubule. J. clin. Invest.47, 1696 (1968)Google Scholar
  15. 15.
    Kokko, J. P., Burg, M. B., Orloff, J.: Characteristics of NaCl and water transport in the renal proximal tubule. J. clin. Invest.50, 69 (1971)Google Scholar
  16. 16.
    Lewy, J. E., Windhager, E. E.: Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Amer. J. Physiol.214, 943 (1968)Google Scholar
  17. 17.
    Lorentz, W. B., Lassiter, W. E., Gottschalk, C. W.: Renal tubular permeability during increased intrarenal pressure. J. clin. Invest.51, 484 (1972)Google Scholar
  18. 18.
    Moody, F. G., Durbin, R. P.: Water flow induced by osmotic and hydrostatic pressure in the stomach. Amer. J. Physiol.217, 255 (1969).Google Scholar
  19. 19.
    Morel, F., Murayama, Y.: Simultaneous measurement of unidirectional and net sodium fluxes in microperfused rat proximal tubules. Pflügers Arch.320, 1 (1970)Google Scholar
  20. 20.
    Nakajima, K., Clapp, J. R., Robinson, R. R.: Limitations of the shrinking-drop micropuncture technique. Amer. J. Physiol.219, 345 (1970)Google Scholar
  21. 21.
    Nutbourne, D. M.: The effect of small hydrostatic pressure gradients on the rate of active sodium transport across isolated living frog skin membranes. J. Physiol. (Lond.)195, 1 (1968)Google Scholar
  22. 22.
    Persson, E., Ågerup, B., Schnermann, J.: The effect of transtubular hydrostatic and oncotic pressure differences on reabsorptive net flux. In: Renal handling of sodium, H. Wirz and F. Spinelli, Eds. Karger: Basel 1972Google Scholar
  23. 23.
    Persson, E., Ågerup, B., Schnermann, J.: The effect of luminal application of colloids on rat proximal tubular net fluid flux. Kidney Int.2, 203 (1972)Google Scholar
  24. 24.
    Radtke, H. W., Rumrich, G., Klöss, S., Ullrich, K. J.: Influence of luminal diameter and flow velocity on the isotonic fluid absorption and36Cl permeability of the proximal convolution of the rat kidney. Pflügers Arch.324, 288 (1971)Google Scholar
  25. 25.
    Schnermann, J., Persson, E., Ågerup, B.: Proximal tubular fluid reabsorption — a multifactorial process. 5th Int. Congr. Nephrol., Mexico City, Vol. II. Basel: Karger 1974Google Scholar
  26. 26.
    Seely, J. F.: Electrical resistance of the rat proximal tubule: variation with distance and effect of saline. Clin. Res.20, 609 (1972)Google Scholar
  27. 27.
    Sonnenberg, H., Solomon, S.: Mechanism of natriuresis following intravascular and extracellular volume expansion. Canad. J. Physiol. Pharmacol.47, 153 (1968)Google Scholar
  28. 28.
    Spitzer, A., Windhager, E. E.: Effect of peritubular oncotic pressure change on proximal tubular fluid reabsorption. Amer. J. Physiol.218, 1188 (1970)Google Scholar
  29. 29.
    Stackelberg, W. v.: Der Einfluß hydrostatischer Druckdifferenzen auf den aktiven Natriumtransport durch die Froschhaut. Pflügers Arch.310, 128 (1969)Google Scholar
  30. 30.
    Ullrich, K. J., Rumrich, G., Fuchs, G.: Wasserpermeabilität und transtubulärer Wasserfluß corticaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.280, 99 (1964)Google Scholar
  31. 31.
    Vargas, F. F.: Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods. J. gen. Physiol.51, 13 (1968)Google Scholar
  32. 32.
    Voute, C. L., Ussing, H. H.: Quantitative relation between hydrostatic pressure gradient, extracellular volume and active sodium transport in the epithelium of the frog skin (R. temporaria). Exp. Cell Res.62, 375 (1970)Google Scholar
  33. 33.
    Wiederholt, M., Langer, K. H., Thoenes, W., Hierholzer, K.: Funktionelle und morphologische Untersuchungen am proximalen und distalen Konvolut der Rattenniere zur Methode der gespaltenen Ölsäule (Split-Oil Droplet Method). Pflügers Arch.302, 166 (1968)Google Scholar
  34. 34.
    Wolgast, M., Persson, E., Schnermann, J., Ulfendahl, H., Wunderlich, P.: Colloid osmotic pressure of the subcapsular interstitial fluid of rat kidneys during hydropenia and volume expansion. Pflügers Arch.340, 123 (1973)Google Scholar
  35. 35.
    Wunderlich, P., Persson, E., Schnermann, J., Ulfendahl, H., Wolgast, M.: Hydrostatic pressure in the subcapsular interstitial space of rat and dog kidneys. Pflügers Arch.328, 307 (1971)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. Schnermann
    • 1
    • 2
  • B. Ågerup
    • 1
    • 2
  • E. Persson
    • 1
    • 2
  1. 1.Physiologisches InstitutUniversität MünchenMünchenGermany
  2. 2.Institute of Physiology and Medical BiophysicsUniversity of UppsalaUppsalaSweden

Personalised recommendations