Pflügers Archiv

, Volume 333, Issue 4, pp 281–296 | Cite as

Blockade by tetraethylammonium (TEA) and rubidium of potassium exchange in sartorius muscle fibers: Distribution of14C-TEA in muscle

  • Robert L. Volle
  • Silas N. Glisson
  • Edward G. Henderson
Article

Summary

Tetraethylammonium (TEA) causes a blockade of42K-exchange in resting sartorius muscle by a mechanism that differs from that caused by rubidium ions. Whereas the blockade by rubidium of42K-efflux was antagonized by elevation of extracellular potassium, that caused by TEA was antagonized only partially. Rubidium-induced blockade has characteristics of competitive inhibition of42K-exchange while the TEA-induced blockade appears to be non-competitive. Moreover, TEA causes a greater blockade of42K-exchange in muscles bathed in hypertonic solutions than in muscles bathed in isotonic solutions. This finding may be related to the more rapid rate of42K-exchange in muscles bathed in hypertonic solutions. The equilibrium constant for the interaction between TEA and membrane receptors estimated during42K-efflux is approximately 20 mM; the equilibrium constant for rubidium ions is 1.4 mM. The14C-TEA space in sartorius muscle is about 2-times greater than the14C-inulin or sodium spaces but somewhat smaller than14C-urea space. The rates of efflux14C-TEA,14C-inulin and14C-urea are comparable and rapid. Thus, the muscle membrane does not appear to offer a barrier to the exchange of TEA.

Key words

Tetraethylammonium Rubidium 42K-Exchange Sartorius Muscle 14C-TEA-Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H.: Movement of inorganic ions across the membrane of striated muscle. Circulation26, 1214–1223 (1962).Google Scholar
  2. —: The rubidium and potassium permeability of frog muscle membrane. J. Physiol. (Lond.)175, 134–159 (1964).Google Scholar
  3. Armstrong, C. M.: Time course of TEA+-induced anomalous rectification in squid giant axons. J. gen. Physiol.50, 491–503 (1966).Google Scholar
  4. —: Interaction of tetraethylammonium ion derivatives with potassium channels of giant axons. J. gen. Physiol.58, 413–437 (1971).Google Scholar
  5. —, Binstock, L.: Anomalous rectification in the squid axon injected with tetraethylammonium chloride. J. gen. Physiol.48, 859–872 (1965).Google Scholar
  6. Freygang, W. H., Goldstein, D. A., Hellam, D. C., Peachey, L. D.: The relation between the late afterpotential and the size of the transverse tubular system of frog muscle. J. gen. Physiol.48, 235–263 (1964).Google Scholar
  7. Glisson, S. N., Henderson, E. C., Volle, R. L.: Tetraethylammonium (TEA) distribution in resting frog skeletal muscle. Proc. V Inter. Cong. Pharmacol. (in press) (1972).Google Scholar
  8. Hagiwara, S., Saito, N.: Coltage-current relations in verve cell membrane ofOnchidium verruculatum. J. Physiol. (Lond.)148, 161–179 (1959).Google Scholar
  9. —, Watanabe, A.: The effect of tetraethylammonium chloride on the muscle membrane examined with an intracellular micro electrode. J. Physiol. (Lond.)129, 513–527 (1955).Google Scholar
  10. Henderson, E. G.: Asymmetric properties of frog sartorius muscle cell membrane deduced from the interactions of rubidium and potassium ions. Doctoral dissertation, University of Maryland, U.S.A., 1966.Google Scholar
  11. Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. gen. Physiol.50, 1287–1302 (1967).Google Scholar
  12. Hodgkin, A. L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)108, 513–528 (1949).Google Scholar
  13. Horowicz, P., Gage, P. W., Eisenberg, R. S.: The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. gen. Physiol.51, 193s-203s (1968).Google Scholar
  14. Koppenhöfer, E.: Die Wirkung von Tetraäthylammoniumchlorid auf die Membranströme Ranvierscher Schnürringe vonXenopus laevis. Pflügers Arch. ges. Physiol.293, 34–55 (1967).Google Scholar
  15. —, Vogel, W.: Wirkung von tetrodotoxin und Tetraäthylammoniumchlorid an der Innenseite der Schnürringsmembran vonXenopus laevis. Pflügers Arch.313, 361–380 (1969).Google Scholar
  16. Müller, P.: Potassium and rubidium exchange across the surface membrane of cardiac Purkinje fibers. J. Physiol. (Lond.)177, 453–462 (1965).Google Scholar
  17. Renkin, E. M.: Permeability of frog skeletal muscle cells to choline. J. gen. Physiol.44, 1159–1164 (1961).Google Scholar
  18. Schmidt, H., Stämpfli, R.: Die Wirkung von Tetraäthylammoniumchlorid auf den einzelnen Ranvierschen Schnürring. Pflügers Arch. ges. Physiol.287, 311–325 (1966).Google Scholar
  19. Sjodin, R. A.: Some cation interactions in muscle. J. gen. Physiol.44, 929–962 (1961).Google Scholar
  20. —: The potassium flux ratio in skeletal muscle as a test for independent ion movement. J. gen. Physiol.48, 777–795 (1965).Google Scholar
  21. —, Henderson, E. G.: Tracer and non-tracer potassium fluxes in frog sartorius muscle and the kinetics of net potassium movement. J. gen. Physiol.47, 605 to 638 (1964).Google Scholar
  22. Stanfield, P. R.: The effect of tetraethylammonium ion on the delayed currents of frog skeletal muscle. J. Physiol. (Lond.)209, 209–229 (1970a).Google Scholar
  23. —: The differential effects of tetraethylammonium and zinc ions on the resting conductance of frog skeletal muscle. J. Physiol. (Lond.)209, 231–256 (1970b).Google Scholar
  24. Vierhaus, J., Ulbricht, W.: Rate of action of tetraethylammonium ions on the duration of action potentials in single Ranvier nodes. Pflügers Arch.326, 88–100 (1971).Google Scholar
  25. Volle, R. L.: The actions of tetraethylammonium ions on potassium fluxes in frog sartorius muscle. J. Pharmacol. exp. Ther.172, 230–238 (1970a).Google Scholar
  26. —: Blockade by barium of potassium fluxes in frog sartorius muscle. Life Sci.3, 175–180 (1970b).Google Scholar
  27. —: Blockade by 9-aminoacridine of potassium fluxes in frog sartorius muscle. Biochem. Pharmacol.20, 315–324 (1971).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Robert L. Volle
    • 1
  • Silas N. Glisson
    • 1
  • Edward G. Henderson
    • 1
  1. 1.Department of Pharmacology, University of Connecticut Health CenterMcCook HospitalHartfordUSA

Personalised recommendations