Skip to main content
Log in

Phenomenologic description of Na+, Cl and HCO 3 absorption from proximal tubules of the rat kidney

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Proximal tubules of the rat kidney were perfused in vivo with NaCl-NaHCO3 Ringer's solution and the net rates of fluid absorption from Gertz shrinking drops were measured as well as the stationary electro-chemical potential differences for Na+ and Cl that develop across the tubular wall during constant fluid absorption. By altering the rate of fluid absorption through addition of raffinose to the peritubular perfusate or to the lumen fluid, the relations between the net ion fluxes and the electrochemical potential differences were obtained for Na+, Cl and HCO 3 . From these relations which were reasonably linear for Na+ and Cl over small deviations from equilibrium, single ion reflection coefficients and active transport rates were calculated. Since the calculations required a knowledge of the permeability coefficients of the tubular wall for Na+ and Cl, in a separate series of experiments these coefficients were determined from tracer flux experiments. The calculations yield σNa=0.7, and σCl=0.5\(\sigma _{HCO_2 } \) can be estimated to be substantially greater than σCl. Comparing the active transport rates to the net fluid absorption under conditions similar to free flow in the normal kidney, the following conclusions can be drawn: approximately one third of the sodium is resorbed by active transport, one third by electrical transference and one third by solvent drag. Chloride transport is entirely passive. One half of the chloride is resorbed by diffusion and one half by solvent drag. Bicarbonate transport appears to be entirely active, and the active transport rate is greater than the net transport pointing to passive bicarbonate back flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, M., Burg, M. B., Orloff, J.: Chloride fluxes in rabbit kidney tubules in vitro. Amer. J. Physiol.213, 1249–1253 (1967)

    Google Scholar 

  2. Baldamus, C. A., Radtke, H. W., Rumrich, G., Sauer, F., Ullrich, K. J.: Reflection coefficient and permeability of urea in the proximal convolution of the rat kidney. J. mebr. Biol.7, 377–390 (1972)

    Google Scholar 

  3. Bank, N.: Relationship between electrical and hydrogen ion gradients across rat proximal tubule. Amer. J. Physiol.203, 577–582 (1962)

    Google Scholar 

  4. Bennet, C. M., Brenner, B. M., Berliner, R. W.: Micropuncture study of nephron function in the Rhesus monkey. J. clin. Invest.47, 203–216 (1968)

    Google Scholar 

  5. Bloomer, A. H., Rector, F. C., Jr., Seldin, D. W.: The mechanism of potassium reabsorption in the proximal tubule of the rat. J. clin. Invest.42, 277–285 (1963)

    Google Scholar 

  6. Boulpaep, E. L., Seely, J. F.: Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Amer. J. Physiol.221, 1084–1096 (1971)

    Google Scholar 

  7. Bresler, E. H.: Reabsorptive response of renal tubules to elevated sodium and chloride concentrations in plasma. Amer. J. Physiol.199, 517–521 (1960)

    Google Scholar 

  8. Curran, P. F., MacIntosh, J. R.: A model system for biological water transport. Nature (Lond.)193, 347–348 (1962)

    Google Scholar 

  9. Diamond, J. M.: The mechanism of solute transport by the gall bladder. J. Physiol. (Lond.)161, 474–502 (1962)

    Google Scholar 

  10. Diamond, J. M., Bossert, W. H.: Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. gen. Physiol.50, 2061–2083 (1967)

    Google Scholar 

  11. Frömter, E.: Progress in microelectrode techniques for kidney tubules. Yale J. Biol. Med.45, 414–425 (1972)

    Google Scholar 

  12. Frömter, E.: Electrophysiology and isotonic, fluid absorption, In: Physiology of the kidney, K. Thurau, Ed. Oxford: Med. Tech. Publ. Co. 1973 (in press)

    Google Scholar 

  13. Frömter, E., Hegel, U.: Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Rattenniere. Pflügers Arch. ges. Physiol.291, 107–120 (1966)

    Google Scholar 

  14. Frömter, E., Müller, C. W., Knauf, H.: Fixe negative Wandladungen im proximalen Konvolut der Rattenniere und ihre Beeinflussung durch Calciumionen. VI. Symposion der Gesellschaft für Nephrologie, Wien 1968, p. 61.

  15. Frömter, E., Müller, C. W., Wick, T.: Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods, In: Electrophysiology of epithelial cells, G. Giebisch, Ed. pp. 119–146. Stuttgart-New York: Schattauer 1971

    Google Scholar 

  16. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336–356 (1963)

    Google Scholar 

  17. Györy, A. Z.: Reexamination of the split oil droplet method as applied to kidney tubules. Pflügers Arch.324, 328–343 (1971)

    Google Scholar 

  18. Györy, A. Z., Brendel, U., Kinne, R.: Effect of cardiac glycosides and sodium ethacrynate on transepithelial sodium transport in in vivo micropuncture experiments and on isolated plasma membrane Na−K-ATPase in vitro of the rat. Pflügers Arch.335, 287–296 (1972)

    Google Scholar 

  19. Györy, A. Z., Kinne, R.: Energy source for transepithelial sodium transport in rat renal proximal tubules. Pflügers Arch.327, 234–260 (1971)

    Google Scholar 

  20. Hegel, U., Frömter, E., Wick, T.: Der elektrische Wandwiderstand des proximalen Konvolutes der Rattennire. Pflügers Arch. ges. Physiol.294, 274–290 (1967)

    Google Scholar 

  21. Heidrich, H.-G., Kinne, R., Kinne-Saffran, E., Hanning, K.: The polarity of the proximal tubule cell in rat kidney. J. Cell Biol.54, 232–245 (1972)

    Google Scholar 

  22. Hogben, C. A. M.: Active transport of chloride by isolated frog gastric epithelium. Origin of gastric mucosal potential. Amer. J. Physiol.180, 641–649 (1955)

    Google Scholar 

  23. Kashgarian, M., Stöckle, H., Gottschalk, C. W., Ullrich, K. J.: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (Diabetes insipidus). Pflügers Arch. ges. Physiol.277, 89–106 (1963)

    Google Scholar 

  24. Kashgarian, M., Warren, Y., Levitin, H.: Micropuncture study of proximal renal tubular chloride transport during hypercapnea in the rat. Amer. J. Physiol.209, 655–658 (1965)

    Google Scholar 

  25. Kedem, O., Essig, A.: Isotope flows and flux ratios in biological membranes. J. gen. Physiol.48, 1047–1070 (1965)

    Google Scholar 

  26. Kokko, J. P., Burg, M. B., Orloff, J.: Characteristics of NaCl and water transport in the renal proximal tubule. J. clin. Invest50, 69–76 (1971)

    Google Scholar 

  27. Lowry, O. H., Passonneau, J. V., Schulz, D. W., Rock, M. K.: The measurement of pyridine nucleotides by enzymatic cycling. J. biol. Chem.236, 2746–2759 (1961)

    Google Scholar 

  28. Mac-Innes, D. A.: The principles of electrochemistry. New York: Dover Publ. Inc. 1961

    Google Scholar 

  29. Malnic, G., Klose, R. M., Giebisch, G.: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol.206, 674–686 (1964)

    Google Scholar 

  30. Malnic, G., Mello Aires, M.: Microperfusion study of anion transfer in proximal tubules of rat kidney. Amer. J. Physiol.218, 27–32 (1970)

    Google Scholar 

  31. Maude, D. L.: Effects of K and ouabain on fluid transport and cell Na in proximal tubule in vitro. Amer. J. Physiol.216, 1199–1206 (1969)

    Google Scholar 

  32. Maude, D. L.: Mechanism of salt transport and some permeability properties of rat proximal tubule. Amer. J. Physiol.218, 1590–1595 (1970)

    Google Scholar 

  33. Peczny, W.: Transport von Tracern in einem binären Nichtelektrolyt-membran-System. Diss., TH Darmsatdt 1967, D 17

  34. Persson, A. E. G., Ågerup B., Schnermann, J.: The effect of luminal application of colloids on rat proximal tubular net fluid flux, Kidney Intern.2, 203–213 (1972)

    Google Scholar 

  35. Persson, E., Ulfendahl, H. R.: Water permeability in rat proximal tubules. Acta physiol. scand.78, 353–363 (1970)

    Google Scholar 

  36. Pitts, R. F.: Physiology of the kidney and body fluids, p. 20. Chicago: Year book medical publishers Inc. 1963

    Google Scholar 

  37. Radtke, H. W., Rumrich, G., Kinne-Saffran, E., Ullrich, K. J.: Dual action of acetazolamide and furosemide on proximal volume absorption in the rat kidney. Kidney Intern.1, 100–105 (1972)

    Google Scholar 

  38. Radtke, H. W., Rumrich, G., Klöss, S., Ullrich, K. J.: Influence of luminal diameter and flow velocity on the isotonic fluid absorption and36Cl permeability of proximal convolution of the rat kidney. Pflügers Arch.324, 288–296 (1971)

    Google Scholar 

  39. Ramsay, J. A., Brown, R. M. J., Croghan, P. C.: Electrometric titration of chloride in small volumes. J. exp. Biol.32, 822 (1955)

    Google Scholar 

  40. Rector, C. F., Jr., Carter, N. W., Seldin, D. W.: The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. clin. Invest.44, 278–290 (1965)

    Google Scholar 

  41. Rector, F. C., Jr., Martinez-Maldonado, M., Brunner, F. P., Seldin, D. W.: Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney (Abstract). J. clin. Invest.45, 1060 (1966)

    Google Scholar 

  42. Sauer, F.: Nonequilibrium thermodynamics of kidney tubule transport, In: Handbook of Physiology American Physiological Society, Washington 1973 (in press)

  43. Schmidt, U., Dubach, U. C.: Na K stimulated adenosinetriphosphatase: Intracellular cellular localisation within the proximal tubule of the rat nephron. Pflügers. Arch.330, 265–270 (1971)

    Google Scholar 

  44. Sonnenberg, J., Deetjen, P., Hampel, W.: Methode zur Durchströmung einzelner Nephronabschnitte Pflügers Arch. ges. Physiol.278, 669–674 (1964)

    Google Scholar 

  45. Spitzer, A., Windhager, E. E.: Continuous in vivo perfusion of the postglomerular capillary network in superficial rat kidney cortex. Yale J. Biol. Med.45, 307–311 (1972)

    Google Scholar 

  46. Steinhausen, M., Eisenbach, G.-M., Helmstädter V.: Concentration of lissamine green in proximal tubules of antidiuretic and mercury poisoned rat and the permeability of theses tubules. Pflügers Arch.311, 1–15 (1969)

    Google Scholar 

  47. Ullrich, K. J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology, In: Laboratory techniques in membrane biophysics, pp. 106–129. H. Passow and R. Stämpfli, Eds.. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  48. Ullrich, K. J., Radtke, H. W., Rumrich, G. with technical assistance of Klöss, S.: The role of bicarbonate and other bufferes on isotonic fluid absorption in the proximal convolution of the rat kidney. Pflügers Arch.330, 149–161 (1971)

    Google Scholar 

  49. Ullrich, K. J., Rumrich, G., Fuchs, G.: Wasserpermeabilität and transtubulärer Wasserfluß corticaler Nephronabschnitte aus verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.280, 99–119 (1964)

    Google Scholar 

  50. Ullrich, K. J., Rumrich, G., Schmidt-Nielsen, B.: Reflection coefficient of different nonelectrolytes in the proximal convolution of the rat kidney (Abstract). Fed. Proc.26, 375 (1967)

    Google Scholar 

  51. Ussing, H. H.: Interpretation of the exchange of radio sodium in isolated muscle. Nature (Lond.)160, 262–263 (1947)

    Google Scholar 

  52. Vieira, F. L., Malnic, G.: Hydrogen ion scretion by rat renal cortical tubules as studied by an antimony microelectrode. Amer. J. Physiol.214, 710–718 (1968)

    Google Scholar 

  53. Wiederholt, M., Wiederholt, B.: Der Einfluß von Dexamethason auf die Wasser- und Elektrolytausscheidung adrenalektomierter Ratten. Pflügers Arch. ges. Physiol.302, 57–78 (1968)

    Google Scholar 

  54. Windhager, E. E., Giebisch, G.: Electrophysiology of the nephron. Physiol. Rev.45, 214–244 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frömter, E., Rumrich, G. & Ullrich, K.J. Phenomenologic description of Na+, Cl and HCO 3 absorption from proximal tubules of the rat kidney. Pflugers Arch. 343, 189–220 (1973). https://doi.org/10.1007/BF00586045

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586045

Key words

Navigation