Advertisement

Pflügers Archiv

, Volume 345, Issue 2, pp 131–143 | Cite as

The anaerobic recovery of frog muscle

  • G. Ambrosoli
  • P. Cerretelli
Article

Summary

The muscle may undergo a partial recovery of its high energy phosphate stores in the absence of oxygen by the way of glycolysis (anaerobic recovery). This process has been studied in 41 pairs of frog gastrocnemii at different degrees of exhaustion induced by variable trains of supramaximal stimuli. Anaerobic recovery appears to be inadequate to replenish the fraction of muscle high energy phosphate stores (GP=ATP+PC) split as a consequence of the stimulation. The maximal amount of recovery (on the average about 5 μMoles of GP per gram of fresh tissue) occurs when the muscle resting stores have been reduced to about 50%. This limitation in the extent of recovery is not a consequence of a reduced availability of glycogen but it is possibly related to the production of some metabolic intermediate, limiting the rate of the glycolytic sequence, likely the accumulation of lactic acid in the fiber. The time course of the anaerobic recovery process is characterized by at1/2 of about 2 min. The efficiency of the process, i.e. the number of the high energy phosphate bonds resynthesized by one Mole of lactic acid, appears to vary between 1.5 and 1.8, being of the same order of magnitude as the GP/L.A. ratio obtained from muscle extracts.

Key words

Lactic Acid in Muscle High Energy Phosphates in Muscle Anaerobic Recovery Efficiency of Anaerobic Glycolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosoli, G., Cerretelli, P.: Il rendimento della resintesi dei fosfati altamente energetici (ATP+PC) nel corso del ristoro anaerobico. Boll. Soc. ital. Biol. sper.46, 667–668 (1970)Google Scholar
  2. 2.
    Bendall, J. R., Taylor, A. A.: The Meyerhof quotient and the synthesis of glycogen from lactate in frog and rabbit muscle. A reinvestigation. Biochem. J.118, 887–893 (1970)Google Scholar
  3. 3.
    Cerretelli, P., Ambrosoli, G., Fumagalli, M.: Anaerobic recovery in man. Arch. Fisiol.68, 319–320 (1971)Google Scholar
  4. 4.
    Cerretelli, P., di Pampero, P. E., Ambrosoli, G.: High energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle. Amer. J. Physiol.222, 1021–1026 (1972)Google Scholar
  5. 5.
    Embden, G., Hirsch-Kauffmann, H., Lenhartz, E., Deuticke, H. J.: Über den Verlauf der Milchsäurebildung beim Tetanus. Hoppe-Seyler's Z. physiol. Chem.151, 209–231 (1926)Google Scholar
  6. 6.
    Gercken, G.: Die quantitative enzymatische Dehydrierung von L(+)-Lactat für die Mikroanalyse. Hoppe-Seyler's Z. physiol. Chem.320, 180–186 (1960)Google Scholar
  7. 7.
    Gercken, G., Hinzen, D. H.: Der Eryhtrocyten-Stoffwechsel nach Zusatz von Hexosen, Pentosen, Zuckerderivaten, Carbonsäuren und Purinucleosiden. Pflüger's Arch. ges. Physiol.283, 26–42 (1965)Google Scholar
  8. 8.
    Gercken, G., Hürter, P.: Stationäre Metabolitkonzentrationen im insuffizienten Säugetierherzen nach Monojodacetat- und Natriumfluoridvergiftung. Pflügers Arch. ges. Physiol.292, 100–117 (1966)Google Scholar
  9. 9.
    Gilbert, C., Kretzschmar, K. M., Wilkie, D. R., Woledge, R. C.: Chemical change and energy output during muscular contraction. J. Physiol. (Lond.)218, 163–193 (1971)Google Scholar
  10. 10.
    Hartree, W.: The analysis of the delayed heat production of muscle. J. Physiol. (Lond.)75, 273–287 (1932)Google Scholar
  11. 11.
    Lundsgaard E.: Über die Energetik der anaeroben Muskelkontraktion. Biochem. Z.233, 322–343 (1931)Google Scholar
  12. 12.
    Margaria, R., Moruzzi, G.: Il ristoro anaerobico del muscolo. Arch. Fisiol.37, 203–216 (1937)Google Scholar
  13. 13.
    Meyerhof, O., Lohmann K., Meier, R.: Über die Synthese des Kohlehydrats im Muskel. Biochem. Z.157, 459–491 (1925)Google Scholar
  14. 14.
    Nachmansohn D.: Über den Zerfall der Kreatinphosphorsäure in Zusammenhang mit der Tätigkeit des Muskels I. Biochem. Z.196, 73–97 (1928)Google Scholar
  15. 15.
    Newsholme, E. A.: Theoretical and experimental considerations on the control of glycolysis in muscle. In: Essays in Cell Metabolism, edited by Bartley, Kornberg, and Quayle, pp. 189–223, Wiley 1970Google Scholar
  16. 16.
    Sacks, J.: The absence of anaerobic recovery in mammalian muscle. Amer. J. Physiol.129, 761–764 (1939)Google Scholar
  17. 17.
    Smillie, L. B., Manery, J. P.: Effect of external potassium concentrations, insulin and lactate on frog muscle potassium and respiratory rate. Amer. J. Physiol.198, 67–77 (1960)Google Scholar
  18. 18.
    Thorn, W., Hisselhard, W., Mueldener, B.: Glykogen-, Glukose- und Milchsäuregehalt in Warmblüterorganen bei unterschiedlicher Versuchsanordnung und anoxischer Belastung, mit Hilfe optischer Fermentteste ermittelt. Biochem. Z.331, 545–562 (1959)Google Scholar
  19. 19.
    Thorn W., Pfleiderer, G., Frowein, R. A., Ross, I.: Stoffwechselvorgänge im Gehirn bei akuter Anoxie, akuter Ischaemie und in der Erholung. Pflügers Arch. ges. Physiol.261, 334–360 (1955)Google Scholar
  20. 20.
    Woledge, R. C.: Heat production and chemical change in muscle. Progress Biophys. Molec. Biol.22, 37–74 (1971)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • G. Ambrosoli
    • 1
  • P. Cerretelli
    • 1
  1. 1.Istituto di Fisiologia UmanaUniversità di Milano e Centro di Fisiologia del Lavoro Muscolare del C.N.R.MilanoItalia

Personalised recommendations