Skip to main content
Log in

Fatigue crack growth in plate specimens under Mode III loading

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fatigue crack growth in plate specimens of aluminium and an aluminium alloy has been investigated under Mode III loading conditions. It has been found that only when a fully plastic situation exists, does crack extension proceed by a valid Mode III mechanism. When plasticity is restricted to planes of maximum shear there is a strong component of Mode I cracking which results in delamination in the direction of macroscopic growth. Under constant load amplitude cycling the crack growth curve exhibits three stages: a reduction in rate is followed by a period of steady growth prior to acceleration in the final stages. Such a profile is independent of material condition or failure mechanism. Cycling between fixed displacement limits leads to a reducing growth and crack arrest which occurs at a length proportional to the square of the displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Roberts andJ. Kibler,Trans. Amer. Soc. Mech. Eng. 93 (1971) 671.

    Google Scholar 

  2. D. L. Jones andD. B. Chisholm,Eng. Fracture Mech. 7 (1975) 261.

    Google Scholar 

  3. L. P. Pook andA. F. Greenen, Proceedings of the Conference on Fatigue Testing and Design (Society of Environmental Engineering, London, 1976) Paper 30.

    Google Scholar 

  4. A. Otsuka, K. Mori, T. Ohshima andS. Tsuyama, “Advances in Fracture Research” (Fifth International Conference on Fracture, Cannes, 1981) p. 1851.

  5. G. Hua, M. W. Brown andK. J. Miller,Fatigue Eng. Mater. Struct. 5 (1982) 1.

    Google Scholar 

  6. E. K. Tschegg,Mater. Sci. Eng. 54 (1982) 127.

    Google Scholar 

  7. R. O. Ritchie, F. A. McClintock, H. Nayeb-Hashemi andM. A. Ritter,Metall. Trans. 13 (1982) 101.

    Google Scholar 

  8. E. K. Tschegg, R. O. Ritchie andF. A. McClintock,Int. J. Fatigue 5 (1983) 29.

    Google Scholar 

  9. E. K. Tschegg,J. Mater. Sci. 18 (1983) 1604.

    Google Scholar 

  10. L. P. Pook andJ. K. Sharples,Int. J. Fracture 15 (1979) 223.

    Google Scholar 

  11. W. R. Arscott andM. E. Dalski, University of Bristol, Department of Mechanical Engineering Report No. 76/B/1 (1976).

  12. R. A. Smith andK. J. Miller,Int. J. Mech. Sci. 19 (1977) 11.

    Google Scholar 

  13. J. S. Santer andM. E. Fine,Metall. Trans. 7 (1976) 583.

    Google Scholar 

  14. W. J. Plumbridge,Metal Sci. 12 (1978) 251.

    Google Scholar 

  15. R. A. Westman andW. H. Yang,J. Appl. Mech. 34 (1967) 693.

    Google Scholar 

  16. D. P. Rooke andD. J. Cartwright, “Compendium of Stress Intensity Factors” (HMSO, London, 1974) p. 253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plumbridge, W.J. Fatigue crack growth in plate specimens under Mode III loading. J Mater Sci 20, 1015–1026 (1985). https://doi.org/10.1007/BF00585746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585746

Keywords

Navigation