Skip to main content
Log in

Potassium induced relaxation of vascular smooth muscle: A possible mechanism of exercise hyperaemia

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The relaxing effect of small increases in extracellular K+-concentration ([K+]0) on helical strip preparations of the rat aorta, activated by 2 μg norepinephrine/l, was investigated by simultaneously recording mechanical and extracellular mass electrical activity, the latter from two different points. The results of 148 separate experiments show that increases in [K+]0 in a range between 2.7 and 12.7 mM produce decreases in tension corresponding to vasodilation in vivo. The relaxing effect of increasing [K+]0 is temporary, lasting from 30–200 sec, after which propagation of excitation is improved. The temporary relaxation was not present in any of the 66 experiments in which [K+]0 was increased to more than 13 mM; rather, an immediate increase in tension always occurred. The K+-relaxation is shown to be a result of a temporary impairment or block of conduction. Hyperpolarization as a result of increasing conductance quotient gK∶gNa is discussed as a possible factor in these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoni, H., Herkel, K., Fleckenstein, A.: Die Restitution der automatischen Erregungsbildung in kaliumgelähmten Schrittmacher-Geweben durch Adrenalin. Pflügers Arch. ges. Physiol.277, 633–649 (1963)

    Google Scholar 

  2. Axelsson, J., Holmberg, B.: The effect of K+-free solution on tension development in the smooth muscle taenia coli from guinea pig. Acta physiol. scand.82, 322–332 (1971)

    Google Scholar 

  3. Axelsson, J., Wahlström, B., Johansson, B., Jonsson, O.: Influence of the ionic environment on spontaneous electrical and mechanical activity of the rat portal vein. Circulat. Res.21, 609–618 (1967)

    Google Scholar 

  4. Biamino, G., Kruckenberg, P.: Synchronization and conduction of excitation in the rat aorta. Amer. J. Physiol.217, 376–382 (1969)

    Google Scholar 

  5. Biamino, G., Kruckenberg, P., Wessel, H. J.: Über Beziehungen zwischen Tonus und elektrischer Aktivität der glatten Gefäßmuskulatur. Pflügers Arch.315, 212–231 (1970)

    Google Scholar 

  6. Biamino, G., Thron, H. L.: Spontanrhythmik und contractiler Tonus der isolierten Rattenaorta in Abhängigkeit von der extracellulären Noradrenalin-, K+- und Ca++-Konzentration. Pflügers Arch.305, 361–381 (1969)

    Google Scholar 

  7. Burnstock, G., Holman, M. E.: Effect of drugs on smooth muscles. Ann. Rev. Pharmacol.6, 129–156 (1956)

    Google Scholar 

  8. Chen Wang-Tsau, Brace, R. A., Scott, J. B., Anderson, D. K., Haddy, F. J.: The mechanism of the vasodilator action of potassium. Proc. Soc. exp. Biol. (N.Y.) (in press)

  9. Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: The potassium component of membrane current in Purkinje fibers. Pflügers Arch. ges. Physiol.296, 308–327 (1967)

    Google Scholar 

  10. Emanuel, D. A., Scott, J. B., Haddy, F. J.: Effects of potassium on small and large blood vessels of the dog forelimb. Amer. J. Physiol.197, 637–642 (1959)

    Google Scholar 

  11. Frankenheuser, B., Waltman, B.: Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis. J. Physiol. (Lond.)148, 677–682 (1959)

    Google Scholar 

  12. Gorman, A. L. F., Marmor, M. F.: Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone. J. Physiol. (Lond.)210, 897–917 (1970)

    Google Scholar 

  13. Haas, H. G., Glitsch, H. G., Kern, R., Hantsch, F., Siegel, G.: Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium-Außenkonzentration. Pflügers Arch. ges. Physiol.288, 43–64 (1966)

    Google Scholar 

  14. Haddy, F. J., Scott, J. B.: Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol. Rev.48, 688–707 (1968)

    Google Scholar 

  15. Hodgkin, A. L.: The effect of potassium of the surface membrane of an isolated axon. J. Physiol. (Lond.)106, 319–340 (1947)

    Google Scholar 

  16. Johansson, B., Bohr, D. F.: Rhythmic activity in smooth muscle from small subcutaneous arteries. Amer. J. Physiol.210, 801–806 (1966)

    Google Scholar 

  17. Johansson, B., Jonsson, O.: Similarities between the vascular smooth muscle responses to sudden changes in external potassium, sodium and chloride ion concentrations. Acta physiol. scand.73, 365–378 (1968)

    Google Scholar 

  18. Kjellmer, J.: The potassium ion as a vasodilator during musculatur exercise. Acta physiol. scand.63, 460–468 (1965)

    Google Scholar 

  19. Konold, P., Gebert, G., Brecht, K.: The effect of potassium on the tone of isolated arteries. Pflügers Arch. ges. Physiol.301, 285–291 (1968)

    Google Scholar 

  20. Kuriyama, H.: The influence of potassium, sodium and chloride on the membrane potential of the smooth muscle of taenia coli. J. Physiol. (Lond.)166, 15–28 (1963)

    Google Scholar 

  21. Langer, G. A.: Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev.48, 708–757 (1968)

    Google Scholar 

  22. Noble, D.: Electrical properties of cardiac muscle attributable to inward going (anomalous) rectification. J. cell. comp. Physiol.66 (3 II), 127–136 (1965)

    Google Scholar 

  23. Norton, J. M., Detar, R.: Potassium and isolated coronary vascular smooth muscle. Amer. J. Physiol.222, 474–479 (1972)

    Google Scholar 

  24. Overbeck, H. W., Molnar, J. I., Haddy, F. J.: Resistance to blood flow through the vascular bed of the dog forelimb. Local effects of sodium, potassiumcalcium, magnesium, acetate, hypertonicity and hypotonicity. Amer. J, Cardiol.8, 533–541 (1961)

    Google Scholar 

  25. Scott, J., Emanuel, D., Haddy, F. J.: Effect of potassium on renal vascular resistance and urine flow rate. Amer. J. Physiol.197, 305–308 (1959)

    Google Scholar 

  26. Scott, J., Fröhlich, E. D., Haidin, R. A., Haddy, F. J.: Na+, K+, Ca++ and Mg++ action on coronary vascular resistance in the dog heart. Amer. J. Physiol.201, 1095–1100 (1961)

    Google Scholar 

  27. Skinner, N. S., Powell, W. J., Jr.: Action of oxygen and potassium on vascular resistance of dog skeletal muscle. Amer. J. Physiol.212, 533–540 (1967)

    Google Scholar 

  28. Wahlström, B.: The effects of changes in the ionic environment on venous smooth muscle distribution of sodium and potassium. Acta physiol. scand.82, 382–392 (1971)

    Google Scholar 

  29. Waugh, W. H.: Role of calcium in contractile excitation of vascular smooth muscle by epinephrine and potassium. Circulat. Res.11, 927–940 (1962)

    Google Scholar 

  30. Weidmann, S.: Electrical characteristics of sepia axons. J. Physiol. (Lond.)114, 372–381 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This word was supported by the Deutsche Forschungsgemeinschaft (Bi 122/3).

with the technical assistance of Jutta Nöring

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biamino, G., Wessel, HJ. Potassium induced relaxation of vascular smooth muscle: A possible mechanism of exercise hyperaemia. Pflugers Arch. 343, 95–106 (1973). https://doi.org/10.1007/BF00585705

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585705

Key words

Navigation