Pflügers Archiv

, Volume 374, Issue 3, pp 289–292 | Cite as

Modified K-channel gating by exhaustion and the block by internally applied TEA+ and 4-aminopyridine in muscle

  • R. Fink
  • E. Wettwer
Excitable Tissues and Central Nervous Physiology Letters and Notes


Voltage clamp experiments on frog sartorius muscle fibres suggest that the large increase in resting potassium conductance during metabolic exhaustion is due to a change in the gating of activated potassium channels to a permanently open state. gK in exhausted fibres is less sensitive to externally applied blockers as Zn2+ and 4-aminopyridine (4-AP) while TEA+, Rb+ and Ba2+ act similarly, both in normal and exhausted fibres. In addition, injection experiments provide evidence that TEA+ and 4-AP applied internally to normal fibres effectively block potassium outward current, whereas in exhausted fibres the block seems to be smaller. These results suggest modifications in the structure of the potassium channels during metabolic exhaustion.

Key words

frog skeletal muscle voltage clamp metabolic exhaustion blockage of potassium conductance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fink, R. & Lüttgau, H. C. (1976). An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. J. Physiol., Lond.263, 215–238.PubMedGoogle Scholar
  2. 2.
    Costantin, L. L. (1968). The effect of calcium on contraction and conductance threshold in frog skeletal muscle. J. Physiol., Lond.,195, 119–132.PubMedGoogle Scholar
  3. 3.
    Cole, K. S. (1961). Non-linear current-potential relations in an axon-membrane. J. gen. Physiol.44, 1055–1057.PubMedCrossRefGoogle Scholar
  4. 4.
    Hodgkin, A. L. & Nakajima, S. (1972). The effect of diameter on the electrical constants of frog skeletal muscle fibres. J. Physiol., Lond.,221, 105–120.PubMedGoogle Scholar
  5. 5.
    Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. (1970). Slow changes in potassium permeability in skeletal muscle. J. Physiol., Lond.,208, 645–668.PubMedGoogle Scholar
  6. 6.
    Adrian, R. H. (1964). The rubidium and potassium permeabilities of frog muscle membrane. J. Physiol., Lond.,175, 134–159.PubMedGoogle Scholar
  7. 7.
    Sperelakis, N., Schneider, M. F. & Harris, E. J. (1967). Decreased K+ conductance produced by Ba++ in frog sartorius fibers. J. gen. Physiol.50, 1565–1583.PubMedCrossRefGoogle Scholar
  8. 8.
    Stanfield, P. R. (1970). The effect of the tetraethylammonium ion on the delayed currents of frog skeletal muscle. J. Physiol., Lond.,209, 209–229.PubMedGoogle Scholar
  9. 9.
    Stanfield, P. R. (1975). The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muslce. J. Physiol., Lond.,251, 711–735.PubMedGoogle Scholar
  10. 10.
    Gillespie, J. I. (1977). Voltage-dependent blockage of the delayed potassium current in skeletal muscle by 4-amino-pyridine. J. Physiol., Lond.,273, 64P.Google Scholar
  11. 11.
    Almers, W. (1976). Differential effects of tetracaine on delayed potassium channels and displacement currents in frog skeletal muscle. J. Physiol., Lond.,262, 613–637.PubMedGoogle Scholar
  12. 12.
    Lüttgau, H. C. (1977). New trends in membrane physiology of nerve and muscle fibres. J. comp. Physiol.120, 51–70.CrossRefGoogle Scholar
  13. 13.
    Meves, H. & Pichon, Y. (1977). The effect of internal and external 4-aminopyridine on the potassium currents in intracellularly perfused squid giant axons. J. Physiol., Lond.,268, 511–532.PubMedGoogle Scholar
  14. 14.
    Pelhate, M. & Pichon, Y. (1974). Selective inhibition of potassium current in the giant axon of the cockroach. J. Physiol., Lond.,242, 90–91P.Google Scholar
  15. 15.
    Ulbricht, W. & Wagner, H. H. (1976). Block of potassium channels of the nodal membrane by 4-aminopyridine and its partial removal on depolarization. Pflügers Arch.367, 77–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Yeh, J. Z., Oxford, G. S., Wu, C. H. & Narahashi, T. (1976). Dynamics of aminopyridine block of potassium channels in squid axon membrane. J. gen. Physiol.68, 519–535.PubMedCrossRefGoogle Scholar
  17. 17.
    Gillespie, J. I. & Hutter, O. F. (1975). The actions of 4-aminopyridine on the delayed potassium current in skeletal muscle fibres. J. Physiol., Lond.,252, 70–71P.Google Scholar
  18. 18.
    Armstrong, C. M. & Binstock, L. (1965). Anomalous rectification in the squid giant axon injected with tetraethyl-ammoniumchloride. J. gen. Physiol.48, 859–872.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. Fink
    • 1
  • E. Wettwer
    • 1
  1. 1.Institut für ZellphysiologieRuhr-University BochumBochum 1Germany

Personalised recommendations