Pflügers Archiv

, Volume 374, Issue 3, pp 249–254 | Cite as

Role of calcium in the decline of phosphate reabsorption during phosphate loading in acutely thyroparathyroidectomized rats

  • Hans Oberleithner
  • Rainer Greger
  • Florian Lang
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands

Abstract

In acutely thyroparathyroidectomized (TPTX) rats infusion of inorganic phosphate leads-after saturation of the reabsorptive system-to a continuous decline of the reabsorptive capacity. The present study is designed to define parameters which are responsible for this phenomenon.

Animals are infused a phosphate solution (100 mmol/l, pH 7.4, 0.2 ml/min·kg BW) and a phosphate concentration in plasma of about 5.5 mmol/l is maintained for up to 7 h. While glomerular filtration rate as well as plasma sodium concentration remain virtually constant, plasma potassium concentration initially decreases within the first 4 h of the experiment, but increases again after that period. Phosphate reabsorption declines by some 30%, plasma calcium concentration falls from 1.87±0.03 to 1.11±0.05 mmol/l. The animals develope a mixed respiratory and metabolic alkalosis with a plasma pH of 7.54±0.01, a carbon dioxide tension of 4.66±0.13 kPa (35±1 mm Hg) and a plasma bicarbonate concentration of 28.2±1.3 mmol/l. Phosphaturia leads to osmotic diuresis, to an increase of urine pH and titrable acid.

When the elevated plasma pH is normalized phosphate reabsorption continues to decline. When the elevated plasma bicarbonate is lowered no further significant change of phosphate reabsorption is found. When, however, the decreased plasma calcium is restored by infusion of calcium chloride a significant increase of phosphate reabsorption up to control values is demonstrated (P<0.01).

From these data we conclude that hypocalcaemia in phosphate loaded TPTX rats is the crucial parameter leading to the decline of renal phosphate reabsorption.

Key words

Phosphate Thyroparathyroidectomy Calcium Acid base balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amiel, C., Kuntzinger, H., Couette, S., Coureau, C., Bergounioux, N.: Evidence for a parathyroid hormone-independent calcium modulation of phosphate transport along the nephron. J. Clin. Invest.57, 256–263 (1976)PubMedGoogle Scholar
  2. 2.
    Bank, N., Aynedjian, H. S.: A micropuncture study of the effect of parathyroid hormone on renal bicarbonate reabsorption. J. Clin. Invest.57, 336–344 (1976)Google Scholar
  3. 3.
    Bank, N., Aynedjian, H. S., Weinstein, S. W.: A microperfusion study of phosphate reabsorption by the rat proximal renal tubule. J. Clin. Invest.54, 1040–1048 (1974)PubMedGoogle Scholar
  4. 4.
    Baumann, K., Rumrich, G., Papavassiliou, F., Klöss, S.: pH dependence of phosphate reabsorption in the proximal tubule of the rat kidney. Pflügers Arch360, 183–187 (1975)PubMedCrossRefGoogle Scholar
  5. 5.
    Beck, L. H., Goldberg, M.: Mechanism of the blunted phosphaturia in saline-loaded thyroparathyroidectomized dogs. Kidney Int.6, 18–23 (1974)PubMedGoogle Scholar
  6. 6.
    Boudry, J. F., Troehler, U., Touabi, M., Fleisch, H., Bonjour, J. P.: Secretion of inorganic phosphate in the rat nephron. Clin. Science and Molec. Med.48, 475–489 (1975)Google Scholar
  7. 7.
    Chen, P. S., Toribat, T. Y., Wahner, H.: Microdetermination of phosphorus. Anal. Chem.28, 1956–1958 (1956)CrossRefGoogle Scholar
  8. 8.
    Cuche, J. L., Ott, C. E., Marchand, G. R., Diaz-Buxo, J. A., Knox, F. G.: Intrarenal calcium in phosphate handling. Am. J. Physiol.230, 790–796 (1976)PubMedGoogle Scholar
  9. 9.
    Engle, J. E., Steele, T. H.: Renal phosphate reabsorption in the rat: Effect of inhibitors. Kidney Int.8, 98–104 (1975)PubMedGoogle Scholar
  10. 10.
    Estep, H. L., Gardner, C. T., Jr., Taylor, J. P., Minott, A., Tucker, H. S. G., Jr.: Phosphate excretion patterns following intravenous injection of ethelenediamietetraacetate (EDTA). J. Clin. Endocrin.25, 1385–1392 (1965)CrossRefGoogle Scholar
  11. 11.
    Frick, A.: Reabsorption of inorganic phosphate in the rat kidney. I. Saturation of transport mechanism. II. Suppression of fractional phosphate reabsorption due to expansion of extracellulat fluid volume. Pflügers Arch.304, 351–346 (1968)PubMedCrossRefGoogle Scholar
  12. 12.
    Frick, A., Durasin, I.: Effect of expansion of extracellular fluid volume on the maximal reabsorptive capacity for inorganic phosphate in parathyroidectomized and intact rats. Pflügers Arch.370, 115–119 (1977)PubMedCrossRefGoogle Scholar
  13. 13.
    Führ, J., Kaczmarczyk, J., Krüttgen, C. D.: Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Wochenschr.33, 729 (1955)PubMedCrossRefGoogle Scholar
  14. 14.
    Glorieux, F., Scriver, C. R.: Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science175, 997–1000 (1972)PubMedGoogle Scholar
  15. 15.
    Gradowska, L., Calgar, S., Rutherford, E., Harter, H., Slatopolsky, E.: On the mechanism of the phosphaturia of extracellular fluid volume expansion in the dog. Kidney Int.3, 230–237 (1973)PubMedGoogle Scholar
  16. 16.
    Greger, R., Lang, F., Marchand, G., Knox, F. G.: Site of renal phosphate reabsorption. Micropuncture and microinfusion study. Pflügers Arch.369, 111–118 (1977)PubMedCrossRefGoogle Scholar
  17. 17.
    Lang, F., Greger, R., Marchand, G., Knox, F. G.: Stationary microperfusion study of phosphate reabsorption in proximal and distal nephron segments. Pflügers Arch.368, 45–48 (1977)PubMedCrossRefGoogle Scholar
  18. 18.
    Lavender, A. R., Pullman, T. N.: Changes in inorganic phosphate excretion induced by renal infusion of calcium. Am. J. Physiol.205, 1025–1032 (1963)PubMedGoogle Scholar
  19. 19.
    Le Grimellec, C., Roinel, N., Morel, F.: Simultaneous Mg, Ca, P, K, and Cl analyses in rat tubular fluid. III. During acute Ca plasma loading. Pflügers Arch.346, 171–188 (1974)PubMedCrossRefGoogle Scholar
  20. 20.
    Le Grimellec, C., Roinel, N., Morel, F.: Simultaneous Mg, Ca, P, K, and Cl analysis in rat tubular fluid. IV. During acute phosphate plasma loading. Pflügers Arch.346, 189–204 (1974)PubMedCrossRefGoogle Scholar
  21. 21.
    Maesaka, J. K., Levitt, M. F., Abramson, R. G.: Effect of saline infusion on phosphate transport in intact and thyroparathyroidectomized rats. Am. J. Physiol.225, 1421–1429 (1973)PubMedGoogle Scholar
  22. 22.
    Maesaka, J. K., Berger, M. L., Bornia, M. E., Abramson, R. G., Levitt, M. F.: Effect of mannitol on phosphate transport in intact and acutely thyroparathyroidectomized rats. J. Lab. Clin. Med.87, 680–691 (1976)PubMedGoogle Scholar
  23. 23.
    Mercado, A., Slatopolsky, E., Klahr, S.: On the mechanisms responsible for the phosphaturia of bicarbonate administration. J. Clin. Invest.56, 1386–1395 (1975)PubMedGoogle Scholar
  24. 24.
    Moore, E. W.: Ionized calcium in normal serum, ultrafiltrates, and whole blood determinated by ion-exchange electrodes. J. Clin. Invest.49, 318–334 (1970)PubMedGoogle Scholar
  25. 25.
    Pitts, R. F.: The excretion of urine in the dog. VII. Inorganic phosphate in relation to plasma phosphate level. Am. J. Physiol.106, 1–8 (1933)Google Scholar
  26. 26.
    Popovtzer, M. M., Robinette, J. B., McDonald, K. M., Kuruvila, C. K.: Effect of Ca2+ on renal handling of PO4=: Evidence for two reabsorptive mechanisms. Am. J. Physiol.229, 901–906 (1975)PubMedGoogle Scholar
  27. 27.
    Rasmussen, H.: Ionic and hormonal control of calcium homeostasis. Am. J. Med.50, 567–588 (1971)PubMedCrossRefGoogle Scholar
  28. 28.
    Rasmussen, H., Anast, C., Arnaud, C.: Thyrocalcitonin, EGTA, and urinary electrolyte excretion. J. Clin. Invest.46, 746–752 (1967)PubMedGoogle Scholar
  29. 29.
    Robertson, W. G.: Measurement of ionized calcium in biological fluids. Clin. Chim. Acta24, 149–157 (1969)PubMedCrossRefGoogle Scholar
  30. 30.
    Steele, T. H.: Renal response to phosphorus deprivation: Effect of the parathyroids and bicarbonate. Kidney Int.11, 327–334 (1977)PubMedGoogle Scholar
  31. 31.
    Steele, T. H., DeLuca, H. F.: Influence of dietary phosphorus on renal phosphate reabsorption in the parathyroidectomized rat. J. Clin. Invest.57, 867–874 (1976)PubMedGoogle Scholar
  32. 32.
    Troehler, U., Bonjour, J. P., Fleisch, H.: Inorganic phosphate homeostasis. Renal adaption to the dietary intake in intact and thyroparathyroidectomized rats. J. Clin. Invest.57, 264–273 (1976)Google Scholar
  33. 33.
    Walser, M.: Ion association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrats and protein in normal human plasma. J. Clin. Invest.40, 723–730 (1961)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Hans Oberleithner
    • 1
  • Rainer Greger
    • 1
  • Florian Lang
    • 1
  1. 1.Institut für Physiologie der Universität InnsbruckInnsbruckAustria

Personalised recommendations