Journal of Materials Science

, Volume 25, Issue 2, pp 1491–1496 | Cite as

Effect of carbon on the weldability of Fe-Mn-Al alloys

  • Chang-Pin Chou
  • Chien-Hsun Lee


Based on the composition of 30% Mn, 10% Al, balance Fe, Fe-Mn-Al alloys with different carbon contents and thus different ferrite contents were studied. Tensile tests and U-bend tests on the autogenous GTA welded specimen were utilized to evaluate the weldability. FN measurement, optical metallography, and SEM-EDAX were used to study the microstructural characteristics of the weld metal and the base metal heat affected zone. It was found that the carbon content has a strong influence on the amount of residual ferrite in the Fe-Mn-Al weld metals studied. After heat treatment, the amount of residual ferrite is reduced and annealing twins were found in the weld metal. Tensile strengths in excess of 900 MPa in both the longitudinal and transverse welding directions were obtained. The elongation of the butt-jointwelded specimen is substantially less than that of the base metal, especially for the fully austenitic weld metal. U-bend test results gave an indication of good weldability for the Fe-Mn-Al alloys.


Ferrite Weld Metal Weld Pool Ferrite Content Annealing Twin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Charles, A. Berghezan, A. Lutts andP. Dancoisne,Metal Progr. 116 (1981) 71.Google Scholar
  2. 2.
    S. Banerji,ibid. 31 (1978) 59.Google Scholar
  3. 3.
    W. Korter andW. Tonn,Archiv Eisenhuttenw. 7 (1933) 365.Google Scholar
  4. 4.
    J. L. Ham andR. E. Carins,Product Engng 52 (1958) 59.Google Scholar
  5. 5.
    G. S. Krivonogov, M. F. Alekseyenko andG. G. Solovyeva,Phys. Met. Metallogr. 4 (1975) 86 (English Translation).Google Scholar
  6. 6.
    N. A. Storchak andA. G. Drachinskaya,ibid. 44 (1977) 123.Google Scholar
  7. 7.
    H. Erhart, R. Wang andR. A. Rapp,Phys. Met. Metallogr. 21 (1984) 81.Google Scholar
  8. 8.
    R. Wang, M. J. Straszheim andR. A. Rapp,ibid. 21 (1/2) (1984) 35.Google Scholar
  9. 9.
    P. R. S. Jackson andG. R. Wallwork,Oxid. Metals 21 (3/4) (1984) 135.CrossRefGoogle Scholar
  10. 10.
    R. Wang andF. H. Beck,Metal Progr. 36 (1983) 72.Google Scholar
  11. 11.
    C. L. Tarn, C. T. Hu andC. M. Wan,Chinese J. Mater. Sci. 15A (1983) 75.Google Scholar
  12. 12.
    T. F. Liu, C. M. Wan andB. K. Lee,ibid. 15A (1983) 11.Google Scholar
  13. 13.
    J. G. Duh, S. H. Huarng andC. M. Wan,ibid. 16A (1984) 14.Google Scholar
  14. 14.
    T. F. Liu andC. M. Wan,Scripta Metall. 19 (1985) 727.CrossRefGoogle Scholar
  15. 15.
    T. S. Sheu, S. C. Chang andC. M. Wan,Chinese J. Mater. Sci. 17A (1985) 27.Google Scholar
  16. 16.
    C. P. Chou andC. H. Lee,Scripta Metall. 23 (1989) 901.CrossRefGoogle Scholar
  17. 17.
    Idem., Metallography in press.Google Scholar
  18. 18.
    Idem., Metall. Trans. in press.Google Scholar
  19. 19.
    Idem., Scripta Metall. 23 (1989) 1109.CrossRefGoogle Scholar
  20. 20.
    Idem., Mater. Sci. Engng. in press.Google Scholar
  21. 21.
    W. A. Tiller andJ. W. Rutter,Canad. J. Phys. 34 (1956) 96.CrossRefGoogle Scholar
  22. 22.
    W. F. Savage, C. D. Lundin andA. H. Olson,Welding J. 44 (1965) 1s.Google Scholar
  23. 23.
    G. E. Dieter, in “Mechanical Metallurgy” (McGraw-Hill, New York, 1976) p. 138.Google Scholar
  24. 24.
    R. W. Hertzberg, in “Deformation and Fracture Mechanics of Engineering Materials” (Wiley, New York, 1983) p. 106.Google Scholar
  25. 25.
    K. Masubuchi, in “Analysis of Welded Structures-Residual Stress, Distortion and Their Consequences”, (Pergamon, New York, 1980) p. 2.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • Chang-Pin Chou
    • 1
  • Chien-Hsun Lee
    • 1
  1. 1.Department of Mechanical EngineeringNational Chiao-Tung UniversityHsinchuTaiwan

Personalised recommendations