Journal of Materials Science

, Volume 25, Issue 2, pp 1313–1317 | Cite as

Rate-dependent fatigue of aramid-fibre/carbon-fibre hybrids

  • H. Harel
  • J. Aronhime
  • K. Schulte
  • K. Friedrich
  • G. Marom


A previously observed hybrid effect in the flexural fatigue behaviour of aramid-fibre (A)/carbon-fibre (C) reinforced hybrid is re-examined as far as this effect can be attributed to the loading-rate dependence of the hybrids. This research comprises an investigation of the fatigue behaviour of composites distinguished by its combination of experimental conditions, including the materials, loading mode and rate of loading. Unidirectional carbon-fibre/aramidfibre reinforced hybrids were tested in flexure under a range of strain rates, in order to investigate the hybridization effect on the rate dependent fatigue behaviour. The ACA sandwich hybrid, whose fatigue performance is far better than that of the CAC hybrid, and which exhibits an improvement even with respect to the aramid parent composite, exhibits a clear strain-rate dependence. The different performances of the two hybrids are ascribed to the different rate dependences of the compressive and tensile strength of the parent C and A composites.


Fatigue Fatigue Life Fatigue Behaviour Static Strength Fatigue Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Marom, H. Harel, S. Neumann, K. Friedrich, K. Schulte andH. D. Wagner,Composites (in press).Google Scholar
  2. 2.
    G. D. Sims andD. G. Gladman,Plast. Rubber Mater. Appl. 3 (1978) 41.Google Scholar
  3. 3.
    C. T. Sun andW. S. Chan,ASTM Special Technical Publication 674 (1919) 418.Google Scholar
  4. 4.
    G. C. Tsai, J. F. Doyle andC. T. Sun,J. Compos. Mater. 21 (1987) 2.CrossRefGoogle Scholar
  5. 5.
    J. W. Dally andL. J. Broutman,ibid. 1 (1967) 424.CrossRefGoogle Scholar
  6. 6.
    G. Marom, N. Konieczny andF. R. Tuler,J. Mater. Sci. 11 (1976) 1974.CrossRefGoogle Scholar
  7. 7.
    G. Fernando, R. F. Dickson, T. Adam, H. Reiter andB. Harris,ibid. 23 (1988) 2732.CrossRefGoogle Scholar
  8. 8.
    C. J. Jones, R. F. Dickson, T. Adams, H. Reiter andB. Harris,Composites 14 (1983) 288.CrossRefGoogle Scholar
  9. 9.
    B. D. Agarwal andS. K. Joneja,Mater. Sci. Engng 46 (1980) 63.CrossRefGoogle Scholar
  10. 10.
    M. J. Owen andS. Morris, in “Carbon Fibres: Their Composites and Applications” (Plastics Institute, London, 1971) p. 292.Google Scholar
  11. 11.
    R. B. Pipes,ASTM Special Technical Publication 546 (1974) 419.Google Scholar
  12. 12.
    D. G. Fesko,Polym. Engng Sci. 17 (1977) 242.CrossRefGoogle Scholar
  13. 13.
    K. E. Hoffer Jr., M. Stander andL. Bennett,Polym. Engng Sci. 18 (1978) 120.CrossRefGoogle Scholar
  14. 14.
    K. Schulte, E. Reese andT.-W. Chou, in Proceedings of the International Conference on Composite Materials VI & European Conference on Composite Materials 2, Vol. 4 (Elsevier, Cambridge, 1987) p. 89.Google Scholar
  15. 15.
    G. Marom, S. Fischer, F. R. Tuler andH. D. Wagner,J. Mater. Sci. 13 (1978) 1419.CrossRefGoogle Scholar
  16. 16.
    S. Fischer andG. Marom,Compos. Sci. Tech. 28 (1987) 291.CrossRefGoogle Scholar
  17. 17.
    G. Marom andE. J-H. Chen,Compos. Sci. Tech. 29 (1987) 161.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • H. Harel
    • 1
  • J. Aronhime
    • 1
  • K. Schulte
    • 2
  • K. Friedrich
    • 3
  • G. Marom
    • 1
  1. 1.Casali Institute of Applied Chemistry, Graduate School of Applied Science and TechnologyThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Institute for Materials ScienceD.F.V.L.R.Cologne 90Germany
  3. 3.Polymer and Composites GroupTechnical University Hamburg-HarburgHamburg 90Germany

Personalised recommendations