Pflügers Archiv

, Volume 376, Issue 1, pp 41–45 | Cite as

Human adipose tissue blood flow during prolonged exercise II

  • Jens Bülow
  • Joop Madsen
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology


Subcutaneous and perirenal adipose tissue blood flows (ATBF) were measured by the133Xe washout method before, during and after 4 h exercise on a bicycle ergometer. The load corresponded to about 50% of\(\dot V_{{\text{O}}_{\text{2}} }\) max (i.e. about 1.7l/min). Subcutaneous and perirenal ATBF increased at an average to 3–400 and 700% of their initial control values respectively. In six of nine measuring sites ATBF remained increased in the hour following work. During work plasma glycerol concentrations increased 8 fold. The core temperature increased 0.9°C, skin temperature did not change significantly. During passive elevation of body temperature (core temperature +1.5°C; skin temperature +3°C) neither subcutaneous ATBF nor plasma glycerol concentrations changed significantly. It is concluded that the increase in subcutaneous ATBF during exercise is not a reaction to increased body temperature.

Key words

Adipose tissue blood flow Body temperature, regulation of Exercise Glucose Glycerol Man Oxygen uptake Perirenal adipose tissue Radioactive tracer washout technique Respiratory exchange coefficient Subcutaneous adipose tissue 127Xenon 133Xenon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, A. M., Ladefoged, J.: Partition coefficient of Xe-133 between various tissues and blood in vivo. Scand. J. Clin. Lab. Invest.19, 72–78 (1967)Google Scholar
  2. 2.
    Åstrand, I.: Aerobic work capacity in men and women with special reference to age. Acta Physiol. Scand.49, Suppl. 169, 85 (1960)Google Scholar
  3. 3.
    Bergmayer, H. V., Bernt, E.: Bestimmung mit Glucose-Oxydase und Peroxydase. In: Methoden der enzymatischen Analyse (H. V. Bergmayer, ed.), pp. 1172–1181. Weinheim: Verlag Chemie 1970Google Scholar
  4. 4.
    Bülow, J., Madsen, J.: Compensation for geometrical changes during monitoring of133Xe-washout from subcutaneous adipose tissue. Scand. J. Clin. Lab. Invest.35, 641–644 (1975)Google Scholar
  5. 5.
    Bülow, J., Madsen, J.: Adipose Tissue Blood Flow during Prolonged, Heavy Exercise. Pflügers Arch.363, 231–234 (1976)Google Scholar
  6. 6.
    Carroll, R. G., Berke, R. A., Anger, R. T., Levine, G., Wellman, H. U., Saenger, E. L.: A multiple-dose133Xe solution “generator”: The disposable glass ampule equilibrium chamber. J. Nucl. Med.14, 135–138 (1973)Google Scholar
  7. 7.
    Croke, R. P., Longo, M. B., Skinner, N. S. Jr.: Effect of reflex stimuli on vascular resistance and glycerol release in in vivo dog subcutaneous adipose tissue. Pflügers Arch.369, 49–54 (1977)Google Scholar
  8. 8.
    Fox, R. H., Goldsmith, R., Wolff, H. S.: The use of a radio pill to measure deep body temperature. J. Physiol.160, 22P-23P (1962)Google Scholar
  9. 9.
    Fredholm, B. B., Rosell, S.: Effects of adrenergic blocking agents on lipid mobilization from canine subcutaneous adipose tissue after sympathetic nerve stimulation. J. Pharmacol. Exp. Ther.159, 1–7 (1968)Google Scholar
  10. 10.
    Häggendal, E., Steen, B., Svanborg, A.: Measurement of blood flow through human abdominal subcutaneous fat tissue by local injection of radioactive Xenon (preliminary report). Acta Med. Scand.181, 215–217 (1967)Google Scholar
  11. 11.
    Häggendal, E., Steen, B., Svanborg, A.: Blood flow in subcutaneous fat tissue in patients with diabetes mellitus. Acta Med. Scand.187, 49–53 (1970)Google Scholar
  12. 12.
    Hoffbrand, B. J., Forsyth, R. P.: Regional blood flow changes during norepinephrine, tyramin and methoxamine infusions in the unanesthetized rhesus monkey. J. Pharmacol. Exp. Ther.184, 656–661 (1973)Google Scholar
  13. 13.
    Horstmann, E.: Das Muster der Blutgefäße. In: Probleme der Haut-und Muskeldurchblutung. (L. Deline and E. Witzleb, eds.), pp. 1–10. Berlin-Göttingen-Heidelberg: Springer 1964Google Scholar
  14. 14.
    Larsen, O. A., Lassen, N. A., Quaade, F.: Blood flow through human adipose tissue determined with radioactive Xenon. Acta Physiol. Scand.66, 337–345 (1966)Google Scholar
  15. 15.
    Laurell, S., Tibbling, G.: An enzymatic fluorometric micromethod for the determination of glycerol. Clin. Chim. Acta13, 317–322, 1966Google Scholar
  16. 16.
    Lewis, G. P., Matthews, J.: The mechanism of functional vasodilatation in rabbit epigastric adipose tissue. J. Physiol. (Lond.)207, 15–30 (1970)Google Scholar
  17. 17.
    Mjös, O. D., Akre, S.: Effect of catecholamines on blood flow, oxygen consumption, and release/uptake of free fatty acids in adipose tissue. Scand. J. Clin. Lab. Invest.27, 221–225 (1971)Google Scholar
  18. 18.
    Nagasaka, T., Shimada, N., Nishikura, K.: Vascular and lipolytic responses to infused norepinephrine in canine subcutaneous and omental adipose tissues. Jap. J. Physiol.26, 367–374 (1976)Google Scholar
  19. 19.
    Ngai, S. H., Rosell, S., Wallenberg, L. R.: Nervous regulation of blood flow in the subcutaneous adipose tissue in dogs. Acta Physiol. Scand.68, 397–403 (1966)Google Scholar
  20. 20.
    Nielsen, S. L., Bitsch, V., Larsen, O. A., Lassen, N. A., Quaade, F.: Blood flow through human adipose tissue during lipolysis. Scand. J. Clin. Lab. Invest.22, 124–130 (1968)Google Scholar
  21. 21.
    Rowell, L. B.: Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev.51, 75–159 (1974)Google Scholar
  22. 22.
    Scholander, P. F.: Analysis for accurate estimation of respiratory gases in one half cubic centimeter samples. J. Biol. Chem.167, 235 (1947)Google Scholar
  23. 23.
    Scow, R. O.: Perfusion of isolated adipose tissue: FFA release and blood flow in rat parametrial fat body. In: Handbook of Physiology. Section 5: Adipose Tissue. (A. E. Renold and G. F. Cahill, Jr., eds.), pp. 437–453. Baltimore: Williams & Wilkins Co. 1965Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Jens Bülow
    • 1
  • Joop Madsen
    • 1
  1. 1.Institute of Medical Physiology CUniversity of Copenhagen, Panum InstituteCopenhagen NDenmark

Personalised recommendations