Skip to main content
Log in

Studies on the lithium transport across the red cell membrane

III. Factors contributing to the intraindividual variability of the in vitro Li+ distribution across the human red cell membrane

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

  1. 1.

    Extracellular potassium, bicarbonate, ouabain, dipyridamole and the Na+ distribution between red cells and plasma influence Li+ transport across the human red cell membrane. The significance of these parameters for theintraindividual variability of the steady-state ratio of external to internal Li+ was studied in vitro.

  2. 2.

    Elevation of external K+ in the physiological concentration rangeincreases the steady-state distribution ratio Li /+ e /Li /+ i indirectly by increasing the ratio Na /+ e /Na /+ i through activation of the Na+−K+ pump, and directly by inhibiting ouabain-sensitive Li+ uptake.

  3. 3.

    A rise in bicarbonate concentrationdecreases the Li+ ratio directly by accelerating Li+ uptake through a leak, and indirectly by increasing the Na+ leak, thus reducing the Na+ ratio.

  4. 4.

    Dipyridamole blocks both bicarbonate effects.

  5. 5.

    Ouabain decreases the Na+ ratio and inhibits Li+ uptake by the Na+−K+ pump, thereby exerting two opposite effects on the Li+ distribution ratio.

  6. 6.

    The results confirm the previous observation that the steady-state Li+ distribution depends strongly on the Na+ distribution ratio, i.e., the driving force for Na+-dependent Li+ uphill countertransport. It is concluded that the Na+ distribution between red cells and plasma and the concentrations of K+ and bicarbonate in plasma need to be considered as factors influencing the in vivo Li+ distribution. However, the considerableinterindividual differences of Li+ distribution cannot be ascribed to variations in these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Callahan, T. J., Goldstein, D. A.: Selective passive cation transport in the human red cell membrane. Fed. Proc.31, 845 Abs. (1972)

    Google Scholar 

  2. Duhm, J., Becker, B. F.: Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Pflügers Arch.367, 211–219 (1977)

    Google Scholar 

  3. Duhm, J., Eisenried, F., Becker, B. F., Greil, W.: Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ countertransport system of human erythrocytes. Pflügers Arch.364, 147–155 (1976)

    Google Scholar 

  4. Dorus, E., Pandey, G. N., Davis, J. M.: Genetic determinant of lithium ion distribution. An in vitro and in vivo monozygotic-dizygotic twin study. Arch. gen. Psychiat32, 1097–1102 (1975)

    Google Scholar 

  5. Elizur, A., Shopsin, B., Gershon, S., Ehlenberger, A.: Intra: extracellular lithium ratios and clinical course in affective states. Clin. Pharmacol. Ther.13, 947–952 (1972)

    Google Scholar 

  6. Funder, J., Wieth, J. O.: Human red cell sodium and potassium in metabolic alkalosis. Scand. J. clin. Lab. Invest.34, 49–59 (1974)

    Google Scholar 

  7. Funder, J., Wieth, J. O.: Combined effects of digitalis therapy and of plasma bicarbonate on human red cell sodium and potassium. Scand. J. clin. Lab. Invest.34, 153–160 (1974)

    Google Scholar 

  8. Greil, W., Eisenried, F., Duhm, J.: Über die Verteilung von Lithium zwischen Erythrocyten und Plasma: In-vitro-Untersuchungen zum Transport von Lithium am menschlichen Erythrocyten. Arzneimittel-Forsch. (Drug Res.)26, 1147–1149 (1976)

    Google Scholar 

  9. Greil, W., Schnelle, K., Seibold, S.: Intra/extra-zelluläres Lithium-Verhältnis. Klinische und experimentelle Befunde an Thrombocyten und Erythrocyten. Arzneimittel-Forsch. (Drug Res.)24, 1079–1084 (1974)

    Google Scholar 

  10. Haas, M., Schooler, J., Tosteson, D. C.: Coupling of lithium to sodium transport in human red cells. Nature (Lond.)258, 425–427 (1975)

    Google Scholar 

  11. Levin, M. L., Rector, F. C., Seldin, D. W.: The effects of chronic hypokalaemia, hyponatraemia and acid-base alterations on erythrocyte sodium transport. Clin. Sci.43, 251–263 (1972)

    Google Scholar 

  12. Mendels, J., Frazer, A.: Intracellular lithium concentration and clincal response. Towards a membrane theory of depression. J. psychiat. Res.10, 9–18 (1973)

    Google Scholar 

  13. Mendels, J., Frazer, A.: Alterations in cell membrane activity in depression. Amer. J. Psychiat.131, 1240–1246 (1974)

    Google Scholar 

  14. Needle, M. A., Shapiro, W., Viswanathan, V., Semar, M.: Relation of the extracellular [bicarbonate]/[chloride] ratio to erythrocyte sodium content: A possible new control system. Clin. Sci.43, 311–318 (1972)

    Google Scholar 

  15. Nelson, R. W., Cohen, J. L.: Plasma and erythrocyte kinetic considerations in lithium therapy. Amer. J. Hosp. Pharm.33, 658–664 (1976)

    Google Scholar 

  16. Wieth, J. O.: Effects of monovalent cations on sodium permeability of human red cells. Acta physiol. Scand.79, 76–87 (1970)

    Google Scholar 

  17. Wieth, J. O., Funder, J.: An effect of anions on transfer of sodium through the human red cell membrane. Scand. J. clin. Invest.17, 399–400 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duhm, J., Becker, B.F. Studies on the lithium transport across the red cell membrane. Pflugers Arch. 368, 203–208 (1977). https://doi.org/10.1007/BF00585197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585197

Key words

Navigation