Skip to main content
Log in

Studies on the lithium transport across the red cell membrane

I. Li+ uphill transport by the Na+-dependent Li+ counter-transport system of human erythrocytes

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Li+ net-transfer across cell membranes was studied on human erythrocytes and ghosts preloaded with 1–2 mM Li+ and incubated in saline media of varying composition at initial thermodynamic equilibrium for Li+. The following results were obtained:

  1. 1.

    Li+ is extruded from glycolyzing erythrocytes against an electrochemical gradient until a steadystate Li+ distribution is established after 24–28 h.

  2. 2.

    The initial rate of Li+ extrusion is not altered by ouabain or by reduction of ATP levels to less than 25% of the normal value.

  3. 3.

    Replacement of external Na+ by K+ or choline+ abolishes the establishment of an electrochemical Li+ gradient.

  4. 4.

    The Li+ distribution ratio Li +e /Li +i increases proportional to the ratio Na +e /Na +i at constant extracellular K+ concentrations.

  5. 5.

    In ghost suspension an uphill Li+ transport is driven by an oppositely directed Na+ gradient. The direction of the Li+ uphill transport can be reversed by reversing the Na+ gradient.

From the results it is concluded that the Li+ uphill transport across human red cell membranes is mediated by a Na+-dependent Li+ counter-transport system. This system is not inhibited by ouabain and does not appear to be identical to the Na+−Na+ exchange system described by Garrahan and Glynn [24].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armett, C. J., Ritchie, J. M.: On the permeability of mammalian non-myelated fibres to sodium and lithium ions. J. Physiol. (Lond.)165, 130–140 (1963)

    Google Scholar 

  2. Beaugé, L.: The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle. J. Physiol. (Lond.)246, 397–420 (1975)

    Google Scholar 

  3. Biber, T. U. L., Curran, P. F.: Direct measurements of uptake of sodium at the outer surface of the frog skin. J. gen. Physiol.56, 83–99 (1970)

    Google Scholar 

  4. Blaustein, J. P., Christie, A.: Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve termtinals (synaptosomes) in vitro. Biochim. biophys. Acta (Amst.)419, 295–308 (1976)

    Google Scholar 

  5. Blaustein, M. P., Russell, J. M.: Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J. Membr. Biol.22, 285–312 (1975)

    Google Scholar 

  6. Brading, A. F.: Sodium sodium exchange in the smooth muscle of the guinea pig taenia coli. J. Physiol. (Lond.)251, 79–105 (1975)

    Google Scholar 

  7. Bodemann, H., Passow, H.: Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J. Membr. Biol.8, 1–26 (1972)

    Google Scholar 

  8. Cade, J. F. J.: Lithium salts in the treatment of psychotic exitement. Med. J. Aust.2, 349–352 (1949)

    Google Scholar 

  9. Candia, O. A., Chiarandini, D. J.: Transport of lithium and rectification by frog skin. Biochim. biophys. Acta (Amst.)307, 578–589 (1973)

    Google Scholar 

  10. Cazzullo, C. L., Smeraldi, E., Sacchetti, E.: Intracellular lithium concentration and clinical response. Brit. J. Psychiat.126, 298–300 (1975)

    Google Scholar 

  11. McConaghey, P. D., Maizels, M.: Cation exchanges of lactose-treated human red cells. J. Physiol. (Lond.)162, 485–509 (1962)

    Google Scholar 

  12. Dick, D. A. T., Fry, D. J.: Sodium fluxes in single amphibian oocytes: Further studies and a new model. J. Physiol. (Lond.)247, 91–116 (1975)

    Google Scholar 

  13. Dorus, E., Pandey, G. N., Davis, J. M.: Genetic determination of lithium ion distribution. An in vitro and in vivo monozygotic-dizygotic twin study. Arch. gen. Psychiat.32, 1097–1102 (1975)

    Google Scholar 

  14. Dorus, E., Pandey, G. N., Frazer, A.: Genetic determination of lithium ion distribution. I. An in vitro monozygotic-dizygotic twin study. Arch. gen. Psychiat.31, 463–467 (1974)

    Google Scholar 

  15. Duhm, J.: Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflügers Arch.326, 341–356 (1971)

    Google Scholar 

  16. Duhm, J., Eisenried, F., Becker, B. F., Greil, W.: Studies on lithium transfer across the membrane of human erythrocytes. Pflügers Arch.362, Suppl., R14 (1976)

    Google Scholar 

  17. Reference deleted

  18. Dunn, M. J.: The effects of transport inhibitors on sodium outflux and influx in red blood cells: Evidence for exchange diffusion. J. clin. Invest.49, 1804–1814 (1970)

    Google Scholar 

  19. Dunn, M. J.: Otiabain uninhibited sodium transport in human erythrocytes. Evidence against a second pump. J. clin. Invest.52, 658–670 (1973)

    Google Scholar 

  20. Elizur, A., Shopsin, B., Gershon, S., Ehlenberger, A.: Intra: Extracellular lithium ratios and clinical course in affective states. Clin. Pharmacol. Ther.13, 947–952 (1972)

    Google Scholar 

  21. Flynn, F. V., Maizels, M.: Cation control in human erythrocytes. J. Physiol. (Lond.)110, 301–308 (1949)

    Google Scholar 

  22. Frazer, A., Mendels, J., Sekunda, S. K., Cochrane, C. M., Bianchi, C. P.: The prediction of brain lithium concentration from plasma or erythrocyte measures. J. Psychiat. Res.10, 1–7 (1973)

    Google Scholar 

  23. Garay, R. P., Garrahan, P. J.: The interaction of sodium and potassium with the sodium pump in red cells. J. Physiol. (Lond.)231, 297–325 (1973)

    Google Scholar 

  24. Garrahan, P. J., Glynn, J. M.: The behaviour of the sodium pump in red cells in the absence of external potassium. J. Physiol. (Lond.)192, 159–174 (1967)

    Google Scholar 

  25. Garrahan, P. J., Glynn, J. M.: The sensitivity of the sodium pump to external sodium. J. Physiol. (Lond.)192, 175–188 (1967)

    Google Scholar 

  26. Gershon, S.: Lithium in mania. Clin. Pharmacol. Ther.11, 168–187 (1970)

    Google Scholar 

  27. Glen, A. J. M., Bradbury, M. W. B., Wilson, J.: Stimulation of the sodium pump in the red blood cell by lithium and potassium. Nature (Lond.)239, 399–401 (1972)

    Google Scholar 

  28. Glynn, J. M., Hoffman, J. F.: Nucleotide requirements for sodium-sodium exchange catalyzed by the sodium pump in human red cells. J. Physiol. (Lond.)218, 239–256 (1971)

    Google Scholar 

  29. Greil, W., Eisenried, F., Duhm, J.: Über die Verteilung von Lithium zwischen Erythrocyten und Plasma: In vitro-Untersuchungen zum Lithium-Transport an Menschen-Erythrocyten. Arzneimittel-Forsch. (Drug. Res.)26, 1147–1149 (1976)

    Google Scholar 

  30. Greil, W., Eisenried, F., Schicho, H.: In vitro studies on the lithium transfer across the human red cell membrane. Intern. Congress. Pharmacol. Helsinki, July 20–25, Abstracts Vol., p. 454 (1975)

  31. Greil, W., Schnelle, K., Seibold, S.: Intra/extra-zelluläres Lithium-Verhältnis. Klinische und experimentelle Befunde an Thrombocyten und Erythrocyten. Arzneimittel.-Forsch. (Drug. Res.)24, 1079–1084 (1974)

    Google Scholar 

  32. Haas, M., Schooler, J., Tosteson, D. C.: Coupling of lithium to sodium transport in human red cells. Nature (Lond.)258, 425–427 (1975)

    Google Scholar 

  33. Herrera, F. C.: Inhibition of lithium transport across toad bladder by amiloride. Amer. J. Physiol.222, 499–502 (1972)

    Google Scholar 

  34. Herrera, F. C., Egea, R., Herrera, A. M.: Movement of lithium across toad urinary bladder. Amer. J. Physiol.220, 1501–1508 (1971)

    Google Scholar 

  35. Hokin-Naeverson, M., Spiegel, D. A., Lewis, W. C.: Deficiency of erythrocyte sodium pump activity in bipolar manic-depressive psychosis. Life Sci.15, 1739–1748 (1974)

    Google Scholar 

  36. Johnson, F. N. (ed.): Lithium Research and Therapy. London-New York-San Francisco: Academic Press 1975

    Google Scholar 

  37. Kamino, K., Uyesaka, N., Ogawa, M., Inouye, A.: Calcium binding of synaptosomes isolated from rat brain cortex. II. Inhibitory effects of magnesium ions and some other cations. J. Membr. Biol.21, 113–124 (1975)

    Google Scholar 

  38. Keynes, R. D., Swan, R. C.: The effect of external sodium concentration on the sodium fluxes from frog skeletal muscle. J. Physiol. (Lond.)147, 591–625 (1959)

    Google Scholar 

  39. Leblanc, G.: The mechanism of lithium accumulation in the isolated frog skin epithelium. Pflügers Arch.337, 1–18 (1972)

    Google Scholar 

  40. Levin, M. L., Rector, F. C., Seldin, D. W.: The effects of chronic hypokalaemia, hyponatraemia, and acid-base alterations on erythrocyte sodium transport. Clin. Sci.43, 251–263 (1972)

    Google Scholar 

  41. Lubowitz, H.: Exchange diffusion in human red blood cells. Proc. Soc. exp. Biol. (N.Y.)140, 153–156 (1972)

    Google Scholar 

  42. Lubowitz, H., Whittam, R.: Ion movements in human red cells independent of the sodium pump. J. Physiol. (Lond.)202, 111–131 (1969)

    Google Scholar 

  43. Lyttkens, L., Söderberg, V., Wetterberg, L.: Increased lithium erythrocyte plasma ratio in manic-depressive psychosis. Lancet1973 I, 40

  44. Maizels, M.: Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride. J. Physiol. (Lond.)195, 657–679 (1968)

    Google Scholar 

  45. Maizels, M., Remington, M.: Cation exchanges of human erythrocytes. J. Physiol. (Lond.)145, 641–657 (1959)

    Google Scholar 

  46. Mallinger, A. G., Kupfer, D. J., Poust, R. J., Hanin, J.: In vitro and in vivo transport of lithium by human erythrocytes. Clin. Pharmacol. Ther.18, 467–473 (1975)

    Google Scholar 

  47. Mendels, J., Frazer, A.: Intracellular lithium concentration and clinical response. Towards a membrane theory of depression. J. psychiat. Res.10, 9–18 (1973)

    Google Scholar 

  48. Mendels, J., Frazer, A.: Alterations in cell membrane activity in depression. Amer. J. Psychiat.131, 1240–1246 (1974)

    Google Scholar 

  49. Mendels, J., Frazer, A., Secunda, S. K.: Intra-erythrocyte sodium and potassium in manic-depressive illness. Biol. Psychiat.5, 165–171 (1972)

    Google Scholar 

  50. Motais, R.: Sodium movements in high-sodium beef red cells: Properties of a ouabain-insensitive exchange diffusion. J. Physiol. (Lond.)233, 395–422 (1973)

    Google Scholar 

  51. Naylor, G. J., Dick, D. A. T., Dick, E. G., Le Poidevin, D., Whyte, S. F.: Erythrocyte membrane cation carrier in depressive illness. Psychol. Med.3, 502–508 (1973)

    Google Scholar 

  52. Naylor, G. J., Dick, D. A. T., Dick, E. G., Moody, J. P.: Lithium therapy and erythrocyte membrane cation carrier. Psychopharmacologia (Berl.)37, 81–86 (1974)

    Google Scholar 

  53. Needle, M. A., Shapiro, W., Viswanathan, V., Semar, M.: Relation of the extracellular [bicarbonate]/[chloride] ratio to erythrocyte sodium content: A possible new control system. Clin. Sci.43, 311–318 (1972)

    Google Scholar 

  54. Parker, J. C., Gitelman, H. J., Glosson, P. S., Leonard, D. L.: Role of calcium in volume regulation by dog red blood cells. J. gen. Physiol.65, 84–96 (1975)

    Google Scholar 

  55. Ploeger, E. J.: The effects of lithium on excitable cell membranes. On the mechanism of inhibition of the sodium pump of non-myelinated nerve fibres of the rat. Europ. J. Pharmacol.25, 316–321 (1974)

    Google Scholar 

  56. Reinach, P. S., Candia, O. A., Siegel, G. J.: Lithium transport across isolated frog skin epithelium. J. Membr. Biol.25, 75–92 (1975)

    Google Scholar 

  57. Schou, M.: Lithium studies. 3. Distribution between serum and tissues. Acta pharmacol. (Kbh.)15, 115–124 (1958)

    Google Scholar 

  58. Schou, M.: Die Lithiumprophylaxe bei manisch-depressiven Psychosen. Nervenarzt42, 1–10 (1971)

    Google Scholar 

  59. Stein, W. D.: The Movement of Molecules across Cell Membranes. Theoretical and Experimental Biology, Vol. 6. New York-London: Academic Press 1967

    Google Scholar 

  60. Robinson, J. D.: Mechanism by which Li+ stimulates the (Na+−K+)-dependent ATPase. Biochim. Biophys. Acta (Amst.)413, 459–471 (1975)

    Google Scholar 

  61. Schless, A. P., Frazer, A., Mendels, J., Pandey, G. N., Theodorides, V. J.: Genetic determination of lithium ion metabolism. II. An in vitro study of lithium ion distribution across erythrocyte membranes. Arch. gen. Psychiat.32, 337–340 (1975)

    Google Scholar 

  62. Smith, I. C. H.: Lithium, sodium and potassium fluxes in frog skeletal muscle. J. Physiol. (Lond.)242, 99–101 (1974)

    Google Scholar 

  63. Thomas, R. C., Simon, W., Oehme, M.: Lithium accumulation by snail neurones measured by a new Li+-sensitive micro-electrode. Nature (Lond.)258, 754–756 (1975)

    Google Scholar 

  64. Tosteson, D. C., Hoffman, J. F.: Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. gen. Physiol.44, 169–194 (1960)

    Google Scholar 

  65. Wespi, H. H.: Active transport and passive fluxes of K, Na and Li in mammalian non-myelinated nerve fibres. Pflügers Arch306, 262–280 (1969)

    Google Scholar 

  66. Whittam, R.: Directional effects of alkali metal ions on adenosine triphosphate hydrolysis in erythrocyte ghosts. Nature (Lond.)196, 134–136 (1962)

    Google Scholar 

  67. Wieth, J. O.: Effects of monovalent cations on sodium permeability of human red cells. Acta physiol. scand.79, 76–87 (1970)

    Google Scholar 

  68. Zakowska-Dabrowska, T., Rybakowski, J.: Lithium-induced EEG changes. Relation to lithium level in serum and red blood cells. Acta psychiat. scand.49, 457–465 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duhm, J., Eisenried, F., Becker, B.F. et al. Studies on the lithium transport across the red cell membrane. Pflugers Arch. 364, 147–155 (1976). https://doi.org/10.1007/BF00585183

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585183

Key words

Navigation