Skip to main content
Log in

Effect of H+ on the membrane potential of silent cells in the ventral and dorsal surface layers of the rat medulla in vitro

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The effect of changing extracellular pH (pH e ) on the membrane potential of silent cells in brain slices taken from the ventral surface layer of the rat medulla oblongata was compared to the response of silent cells in dorsal slices. In both slices, about 50% of cells showed no significant alteration in their membrane potential when they were exposed to acid solution. However, in the ventral slice, 44% of cells were slowly depolarized by H+ without accompanying significant changes in membrane resistance. In the dorsal medulla, acid solution caused a slight and slow hyperpolarization of 34% of the cells, although a few were slightly depolarized. These silent cells were incapable of initiating action potentials and were assumed to be glial cells. After depression of the release of neurotransmitter(s) in the slice by reducing the [Ca2+] e and increasing the [Mg2+] e , silent cells were not depolarized by H+. A putative transmitter acetylcholine depolarized non-specifically the silent cell membrane.

It was concluded that the slow depolarization of the silent cell by H+ could not be considered to be the H+-receptor potential and seemed to be dependent upon intact synaptic connections in the slice. Possible mechanisms of silent cell depolarization in the ventral medulla are discussed considering the corresponding neuronal excitation by H+ in the central chemosensitive structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike, N., Noma, A., Sato, M.: Frog taste cell response to chemical stimuli. Proc. Jap. Acad.49, 464–469 (1973)

    Google Scholar 

  2. Brightman, M. W., Albers, R. W.: Species differences in the distribution of extraneuronal cholinesterase within the vertebrate central nervous system. J. Neurochem.4, 244–250 (1959)

    Google Scholar 

  3. Carpenter, D. O., Hubbard, J. H., Humphrey, D. R., Thompson, H. K., Marshall, W. H.: Carbon dioxide effects on nerve cell function. In: Carbon dioxide and metabolic regulations (G. Nahas and K. E. Schaefer, eds.), pp. 49–62. New York: Springer 1974

    Google Scholar 

  4. Cohen, J. A., Osterbaan, R. A.: The interaction of acetylcholinesterase with substrate. In: Handbuch der Experimentellen Pharmakologie XV. Cholinesterase and Anticholinesterase Agents (Chapter 7, The active site of acetylcholinesterase and related esterases and its reactivity towards substrates and inhibitors) (G. B. Koelle, ed.), pp. 300–316. Berlin-Göttingen-Heidelberg: Springer 1963

    Google Scholar 

  5. Cragg, P., Patterson, L., Purves, M. J.: The pH of brain extracellular fluid in the cat. J. Physiol. (Lond.)272, 137–166 (1977)

    Google Scholar 

  6. Fukuda, Y., Honda, Y.: pH-sensitive cells at ventro-lateral surface of the rat medulla oblongata. Nature New Biol.256, 317–318 (1975)

    Google Scholar 

  7. Fukuda, Y., Honda, Y.: pH sensitivity of cells located at the ventrolateral surface of the cat medulla oblongata in vitro. Pflügers Arch.364, 243–247 (1976)

    Google Scholar 

  8. Fukuda, Y., Loeschcke, H. H.: Effect of H+ on spontaneous neuronal activity in the surface layer of the rat medulla oblongata in vitro. Pflügers Arch.371, 125–134 (1977)

    Google Scholar 

  9. Grossman, R. G., Hampton, T.: Depolarization of cortical glial cells during electrocortical activity. Brain Res.11, 316–324 (1968)

    Google Scholar 

  10. Hori, T., Roth, G. L., Yamamoto, Y. S.: Respiratory sensitivity of rat brain-stem surface to chemical stimuli. J. Appl. Physiol.28, 721–724 (1970)

    Google Scholar 

  11. Hubbard, J. I., Jones, S. F., Landau, E. M.: On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J. Physiol. (Lond.)194, 355–380 (1968)

    Google Scholar 

  12. Karahashi, Y., Goldring, S.: Intracellular potentials from ‘Idle’ cells in cerebral cortex of cat. Electroenceph. Clin. Neurophysiol.20, 600–607 (1966)

    Google Scholar 

  13. Kelly, J. P., Van Essen, D. C.: Cell structure and function in the visual cortex of the cat. J. Physiol. (Lond.)238, 515–547 (1974)

    Google Scholar 

  14. Kolle, G. B.: The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. Exp. Ther.114, 167–184 (1955)

    Google Scholar 

  15. Krnjević, K., Schwartz, S.: Some properties of unresponsible cells in the cerebral cortex. Exp. Brain Res.3, 306–319 (1967)

    Google Scholar 

  16. Krnjevié, K.: Chemical nature of synaptic transmission in vertebrates. Physiol. Rev.54, 418–540 (1974)

    Google Scholar 

  17. Kuffler, S. W., Nicholls, J. G.: The physiology of neuroglial cells. Ergeb. Physiol.57, 1–90 (1966)

    Google Scholar 

  18. Kuffler, S. W., Nicholls, J. G.: From neuron to brain: A cellular approach to the function of the nervous system, pp. 255–288. Sunderland, Massachusets: Sinauer Associates, INC. Publishers 1976

    Google Scholar 

  19. Leusen, I.: Chemosensitivity of the respiratory center. Influence of CO2 in the cerebral ventricles on respiration. Am. J. Physiol.176, 39–44 (1954)

    Google Scholar 

  20. Leusen, I.: Chemosensitivity of the respiratory center. Influence of changes in the H+ and total buffer concentrations in the cerebral ventricles on respiration. Am. J. Physiol.176, 45–51 (1954)

    Google Scholar 

  21. Loescheke, H. H., Koepchen, H. P., Gertz, K. H.: Über den Einfluß von Wasserstoffionenkonzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pflügers Arch. Ges. Physiol.266, 569–585 (1958)

    Google Scholar 

  22. Loeschcke, H. H., de Lattre, J., Schläfke, M. E., Trouth, C. O.: Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir. Physiol.10, 184–197 (1970)

    Google Scholar 

  23. Loeschcke, H. H.: Central nervous chemoreceptors. In: Respiration physiology (J. G. Widdicombe, ed.), MTP International Review of Science, Physiology Series Vol. 2, pp. 167–196. London: Butterworths 1974

    Google Scholar 

  24. Mitchell, R. A., Loeschcke, H. H., Massion, W. H., Severinghaus, J. W.: Respiratory response mediated through superficial chemosensitive areas on the medulla. J. Appl. Physiol.18, 523–533 (1963)

    Google Scholar 

  25. Ozeki, M.: Conductance change associated with receptor potentials of gustatory cells in rat. J. Gen. Physiol.58, 688–699 (1971)

    Google Scholar 

  26. Pokorski, M.: Neurophysiological studies on central chemosensor in medullary ventrolateral areas. Am. J. Physiol.230, 1288–1295 (1976)

    Google Scholar 

  27. Ransom, B. R., Goldring, S.: Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol.36, 855–868 (1973)

    Google Scholar 

  28. Ransom, B. R., Goldring, S.: Slow depolarization in cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol.36, 869–878 (1973)

    Google Scholar 

  29. Richards, C. D., Sercombe, R.: Calcium, magnesium and the electrical activity of guinea-pig olfactory cortex in vitro. J. Physiol. (Lond.)211, 571–584 (1970)

    Google Scholar 

  30. Schläfke, M. E., Loeschcke, H. H.: Lokalisation eines an der Regulation von Atmung und Kreislauf beteiligten Gebietes an den ventralen Oberflächen der Medulla oblongata durch Kälteblockade. Pflügers Arch. Ges. Physiol.297, 201–220 (1967)

    Google Scholar 

  31. Schläfke, M. E., Pokorski, M., See, W. R., Prill, P. K., Loeschcke, H. H.: Chemosensitive neurons on the ventral medullary surface. Bull. Physiopath. Resp.11, 277–284 (1975)

    Google Scholar 

  32. Somjen, G. G.: Evoked sustained focal potentials and membrane potential of neurons and of unresponsive cells of the spinal cord. J. Neurophysiol.33, 562–582 (1970)

    Google Scholar 

  33. Somjen, G. G.: Electrophysiology of neuroglia. Ann. Rev. Physiol.37, 163–190 (1975)

    Google Scholar 

  34. Takahashi, K.: Slow and fast groups of pyramidal tract cells and their respective membrane properties. J. Neurophysiol.28, 908–924 (1965)

    Google Scholar 

  35. Werblin, F. S., Dowling, J. E.: Organization of the retina of the mudpuppy,Necturus Maculosus: II. Intracellular recording. J. Neurophysiol.32, 339–355 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, Y., Honda, Y., Schläfke, M.E. et al. Effect of H+ on the membrane potential of silent cells in the ventral and dorsal surface layers of the rat medulla in vitro. Pflugers Arch. 376, 229–235 (1978). https://doi.org/10.1007/BF00584955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584955

Key words

Navigation