Advertisement

Journal of Materials Science

, Volume 25, Issue 6, pp 3029–3033 | Cite as

Defects restoration during cooling and annealing in PTC type barium titanate ceramics

  • Tsai-Fa Lin
  • Chen-Ti Hu
  • I-Nan Lin
Article

Abstract

The PTC-type BaTiO3 ceramics of similar microstructure are obtained by careful control of a sintering scheme. The defect chemistry of them is modified by varying the cooling rate and annealing conditons. In addition to applying Heywang and Jonker models for explaining the resistivity anomaly of these samples, the outward diffusion of oxygen vacancies (VO), which left excess barium vacancies (VBa) behind, is proposed to be the formation mechanism of surface states. The formation of defect complex consisting of a V O .. - Ba pair is assumed to be the cause of small diffusivity of VO in these materials. The phenomena, in which the slower cooling rate raises the resistivity of samples, is ascribed to the higher concentration of excess barium vacancies (VBa) contained in these samples. However, the maximum potential barrier height (φmax) of the samples is the same, irrespective of the amount of surface state concentration (Ns) and is estimated to be φmax = 0.66eV, from the In (ϱmax)-1/Tmax plot.

Keywords

Cool Rate BaTiO3 Barrier Height Barium Titanate Defect Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Haayman, R. W. Dam andH. A. Klasens, German Patent 929350, June (1955).Google Scholar
  2. 2.
    W. Heywang,Solid State Electron. 3 (1961) 51.Google Scholar
  3. 3.
    W. Heywang,J. Amer. Ceram. Soc. 47 (1964) 484.Google Scholar
  4. 4.
    G. H. Jonker,ibid. 7 (1964) 895.Google Scholar
  5. 5.
    W. T. Peria, W. R. Brastchum andR. D. Fenity,Ibid. 44 (1961) 249.Google Scholar
  6. 6.
    J. B. Macchesney andJ. F. Potter,ibid. 48 (1965) 81.Google Scholar
  7. 7.
    H. Ihrig andW. Pushchert,J. Appl. Phys. 48 (1977) 3081.Google Scholar
  8. 8.
    J. Daniels, K. H. Häerdtl andR. Wernicke,Philips Technol. Rev. 38 (1978/79) 73.Google Scholar
  9. 9.
    H. Nemoto andI. Oda,J. Amer. Ceram. Soc. 63 (1980) 398.Google Scholar
  10. 10.
    G. B. Lewis andC. R. A. Catlow,Ibid. 68 (1985) 555.Google Scholar
  11. 11.
    H. A. Sauer and J. R. Fisher,Ibid. 44 (1961) 54.Google Scholar
  12. 12.
    P. K. Gallagher, F. Schrey andF. V. DiMarcello,ibid. 46 (1963) 358.Google Scholar
  13. 13.
    H. Ueoka andM. Yodogawa,IEEE Trans. Mfg. Tech. MFT-3 (1974) 72.Google Scholar
  14. 14.
    M. Kuwabara, S. Suemura andM. Kawahara,Amer. Ceram. Soc. Bull. 64 (1985) 1394.Google Scholar
  15. 15.
    O. Saburi andK. Waking,IEEE Trans. Comp. Parts Cp-10 (1963) 53.Google Scholar
  16. 16.
    E. Andrich,Elctron. Appl. 26 (1965/66) 123.Google Scholar
  17. 17.
    T. Matsuoka et al., J. Amer. Ceram. Soc. 55 (1972) 108.Google Scholar
  18. 18.
    G. H. Jonker, in “Advances in Ceramics”, Vol. 1, edited By L. M. Levinson (The American Ceramic Society, Columbus, Ohio, 1981) P. 155.Google Scholar
  19. 19.
    W. Heywang,J. Mater. Sci. 6 (1971) 1214.Google Scholar
  20. 20.
    T. Fukami andH. Tsuchiya,Jpn J. Appl. Phys. 18 (1979) 735.Google Scholar
  21. 21.
    H. Ihrig,J. Amer Ceram. Soc. 64 (1981) 617.Google Scholar
  22. 22.
    M. Kuwabara,ibid. 64 (1981) C-170.Google Scholar
  23. 23.
    T. Ashida andH. Toyoda,Jpn J. Appl. Phys. 5 (1966) 269.Google Scholar
  24. 24.
    R. N. Basu andH. S. Maiti,Mater. Lett. 5 (1987) 99.Google Scholar
  25. 25.
    I. Ueda andS. Ikegami,J. Phys. Soc. Jpn 20 (1965) 546.Google Scholar
  26. 26.
    M. Khan,Amer. Ceram. Soc. Bull. 50 (1971) 677.Google Scholar
  27. 27.
    Y. Matsuo et al., Ibid. 41 (1968) 292.Google Scholar
  28. 28.
    R. N. Basu andH. S. Maiti, in Proceedings of The IEEE 6th Isaf., Bethlehem, Pa, Usa, June 1986, (IEEE, New York, 1986) p. 685.Google Scholar
  29. 29.
    R. Wernicke,Philips Res. Rep.31 (1976) 526.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • Tsai-Fa Lin
    • 1
  • Chen-Ti Hu
    • 1
  • I-Nan Lin
    • 2
  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Chun-Shan Institute of Science and TechnologyLungtanTaiwan

Personalised recommendations