Advertisement

Journal of Materials Science

, Volume 25, Issue 6, pp 2975–2984 | Cite as

Influence of alloying elements and heat treatment on impact toughness of chromium steel surface deposits

  • A. Barbangelo
Article

Abstract

By means of Charpy impact tests, the impact toughness of chromium steels (nominally, 5% and 14% chromium) has been evaluated after the surfacing process and postheating at 350, 450 and 550 ° C. It has been found that impact toughness is primarily affected by the ratio between the nickel and chromium contents of the filler metals. The amount of energy required for impact fracture increases as the nickel to chromium ratio increases from 0.01 to 0.29. A metallographic analysis has shown that the nickel: chromium parameter affects the impact toughness, in that a different microstructure is obtained as this ratio varies. A marked susceptibility to temper embrittlement has been noticed for all types of filler metals examined. All materials are embrittled by postheating at 450 ° C; for some of them, temper embrittlement also occurs at postheating temperatures of 550 ° C. A decrease in toughness results in a larger number of brittle-fracture regions on the impact fracture surfaces. The brittle regions were observed to proceed primarily by a cleavage rupture mechanism.

Keywords

Chromium Impact Toughness Filler Metal Chromium Content Charpy Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Pressouyre, J. Dollet andB. Viellarbaron,Mem. Et. Sci. Rev. Mét. April (1982) 161.Google Scholar
  2. 2.
    G. M. Gordon, in “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys” (N.A.C.E., Houston, Texas, 1977) p. 893.Google Scholar
  3. 3.
    G. Thomas,Metall. Trans. 9A (1978) 439.Google Scholar
  4. 4.
    K. Yoshino andC. L. McMahon, Jr.,Metall. Trans. 5 (1974) 363.Google Scholar
  5. 5.
    S. K. Banerji, C. J. McMahon, Jr andH. C. Feng,Metall. Trans. 9A (1978) 237.Google Scholar
  6. 6.
    A. Barbangelo, unpublished research (1989).Google Scholar
  7. 7.
    L. F. Porter, in “Encyclopedia of Materials Science and Engineering” (Pergamon Press, Oxford, 1986) p. 2157.Google Scholar
  8. 8.
    N. E. Hannerz,Welding J. May (1975) 162s.Google Scholar
  9. 9.
    N. E. Hannerz, in “Welding of HSLA (Microalloyed)” Structural Steels International Conference (A.S.M., Metals Park, Ohio, 1976) p. 365.Google Scholar
  10. 10.
    A. S. Tetelman andA. J. McEvily, in “Fracture of Structural Materials” (John Wiley, New York, 1967) p. 514.Google Scholar
  11. 11.
    B. R. Banerjee, J. J. Hauser andJ. M. Capenos, in ASTM STP 369 (American Society for Testing and Materials, Philadelphia, 1969) p. 291.Google Scholar
  12. 12.
    C. L. Briant andS. K. Banerji,Metall. Trans. 10A (1979) 123.Google Scholar
  13. 13.
    J. R. Rellick andC. J. McMahon, Jr,ibid. 5 (1974) 2439.Google Scholar
  14. 14.
    A. L. Schaeffler,Met. Prog. 56 (1949) 680.Google Scholar
  15. 15.
    H. W. Hayden andS. Floreen,Metall. Trans,1 (1970) 1955.Google Scholar
  16. 16.
    T. S. Sudarshan et al., ASME J. Engng. Mater. Technol. 107 (1985) 343.Google Scholar
  17. 17.
    D. Blumfield, G. A. Clark andP. Guha,Met. Construction May (1981) 269.Google Scholar
  18. 18.
    T. Wada andW. C. Hagel,Metall. Trans. 9A (1978) 691.Google Scholar
  19. 19.
    C. J. McMahon, Jr, D. H. Gentner andA. H. Ucisik,ASME J. Engng Mater. Technol. 106 (1984) 66.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • A. Barbangelo
    • 1
  1. 1.Istituto di Meccanica Applicata alle MacchineUniversità di GenovaGenovaItaly

Personalised recommendations