Advertisement

Journal of Materials Science

, Volume 25, Issue 6, pp 2929–2933 | Cite as

Incorporation of transition metal in porous glass-ceramics of TiO2-SiO2 system

  • Toshinori Kokubu
  • Masayuki Yamane
Article

Abstract

Incorporation of transition metals in porous glass-ceramics of TiO2-SiO2 system was made by the phase separation and crystallization of the glasses of TiO2-SiO2-Al2O3-P2O5-CaO-MgO system containing various kinds of transition metals. The amount of transition metals incorporated in the skeleton of the porous glass-ceramics was dependent on both chemical composition of mother glass and conditions of heat treatment. In general the amount decreased with the increasing amount of rutile in the skeleton. In the glass of high TiO2/SiO2 ratio, the incorporation of relatively large amounts of transition metals was possible even if the precipitation of a fairly large amount of rutile occurred. The crystallization of rutile and in porous glass-ceramics was essential to fabricate rigid platelet porous glass-ceramics.

Keywords

Polymer Precipitation Crystallization Heat Treatment Rutile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Kobylinski, J. J. Hammel andH. E. Swift,Ind. Chem. Prod. Res. Dev. 14 (1975) 147.Google Scholar
  2. 2.
    S. Shirai, A. Morikawa andA. Ishinaga,et al.,Bul. Chem. Soc. Jpn. 50 (1977) 3411.Google Scholar
  3. 3.
    F. Janowski, W. Heyer andF. Wolf,React Kinet. Catal. Lett. 18 (1978) 437.Google Scholar
  4. 4.
    W. Haller,Nature 206 (1965) 693.Google Scholar
  5. 5.
    M. J. R. Cantow andJ. F. Johnson,J. Appl. Polymer Sci. 11 (1967) 1851.Google Scholar
  6. 6.
    T. Muzutani,J. Biochem. 94 (1983) 163.Google Scholar
  7. 7.
    T. H. Elmer,Am. Ceram. Soc. Bull. 57 (1978) 1051.Google Scholar
  8. 8.
    T. Yazawa, H. Tanaka andK. Eguchi,et al.,Nippon Kagaku-kai Shi (Jpn) No. 5 (1985) 866.Google Scholar
  9. 9.
    Y. Shindo, K. Obata andT. Hakuta,et al., Proceedings of the 3rd World Energy Conference, Tokyo, Japan (1980) 325.Google Scholar
  10. 10.
    N. Ito, Y. Shindo andK. Haraya,et al.,J. Chem. Eng. Jpn. 21 (1988) 399.Google Scholar
  11. 11.
    K. Otake, T. Tsuji andM. Konno,et al.,ibid. 21 (1988) 443.Google Scholar
  12. 12.
    R. D. Mason andH. H. Weetall,Biotech. Bioeng. 14 (1972) 637.Google Scholar
  13. 13.
    H. V. Baeyer, F. Kochnke andG. Klopp,et al.,J. Membrane Sci. 11 (1982) 275.Google Scholar
  14. 14.
    H. P. Hood andM. E. Nordberg, U.S. Patent 2215039, 1940.Google Scholar
  15. 15.
    J. J. Hammel andT. Allersma, U.S. Patent 3843 341, 1974.Google Scholar
  16. 16.
    R. Maddison andP. W. McMillan,Glass Technol. 21 (1980) 297.Google Scholar
  17. 17.
    E. M. Ravinovichi, M. Ishi-Shalom andA. Kisilev,J. Mater. Sci. 15 (1980) 2027.Google Scholar
  18. 18.
    L. Yao, X. Huang andW. Wang,J. Non-Cryst. Solids 52 (1982) 295.Google Scholar
  19. 19.
    I. Futziyoshi,Kagaku-Kougaku Ronnbun-Shu (Jpn.) 14 (1988) 401.Google Scholar
  20. 20.
    T. Yazawa, H. Tanaka andK. Eguchi,Osaka-Kogyo-Gizyutu-Shikennzyo-Kihou, Osaka, Japan,36 (1985) 32.Google Scholar
  21. 21.
    F. S. Delkii andA. Vavere,J. Catal. 85 (1984) 380.Google Scholar
  22. 22.
    A. Tranchant, R. Messina andJ. Perichon,J. Appl. Electrochem. 16 (1986) 281.Google Scholar
  23. 23.
    T. Kokubu andM. Yamane,J. Mater. Sci. 20 (1985) 4309.Google Scholar
  24. 24.
    Idem, ibid. 22 (1987) 2583.Google Scholar
  25. 25.
    Idem, ibid. 23 (1988) 2449.Google Scholar
  26. 26.
    A. Fuzishima andK. Honnda,Nature 238 (1972) 37.Google Scholar
  27. 27.
    A. Sato andJ. M. White,J. Catal. 69 (1981) 128.Google Scholar
  28. 28.
    M. Gretzel,Acc. Chem. Res. 14 (1981) 376.Google Scholar
  29. 29.
    B. Krauetler andA. J. Bard,J. Amer. Chem. Soc. 100 (1978) 5985.Google Scholar
  30. 30.
    T. Inoue, A. Fuzishima andS. Konishi,et al.,Nature 277 (1979) 637.Google Scholar
  31. 31.
    G. N. Schrauzer andT. D. Guth,J. Amer. Chem. Soc. 99 (1977) 7729.Google Scholar
  32. 32.
    M. Fujihira, Y. Sato andT. Osa,Nature 293 (1981) 206.Google Scholar
  33. 33.
    B. Krauetler andA. J. Bard,J. Am. Chem. Soc. 99 (1977) 7729.Google Scholar
  34. 34.
    T. Matsunaga,J. Antibact. Antifung. Agents (Jpn). 13 (1985) 211.Google Scholar
  35. 35.
    T. Y. Tien, H. L. Stadler andE. F. Gibbons,et al. Ceram. Bull. 54 (1975) 280.Google Scholar
  36. 36.
    N. Yamamoto, S. Tonomura andT. Matsuoka,et al.,Surf. Sci. 92 (1980) 400.Google Scholar
  37. 37.
    S. Senoh, Y. Oda andH. Konishi,Nippon-Kaisui-Gakkai-Shi (Jpn) 38 (1984) 218.Google Scholar
  38. 38.
    A. Paul andR. W. Douglas,Physics and Chemistry of Glass,9 (1968) 21.Google Scholar
  39. 39.
    R. Juza, H. Seidel andJ. Tidemann,Angew, Chem. Internat. 5 (1966) 85.Google Scholar
  40. 40.
    T. Saito, N. Mochida andA. Ohtsuka,Yogyo-Kyokai-Shi (Jpn),95 (1987) 604.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • Toshinori Kokubu
    • 1
  • Masayuki Yamane
    • 2
  1. 1.Department of Industrial ChemistryMiyakonojo National College of TechnologyMiyazakiJapan
  2. 2.Department of Inorganic MaterialsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations