Journal of Materials Science

, Volume 25, Issue 6, pp 2780–2784 | Cite as

Influence of microstructure on strength and fracture toughness ofβ-Sialon

  • K. Kishi
  • S. Umebayashi
  • E. Tani
Article

Abstract

β-Sialon (Si6−zAl z O z N8−z) withz = 0.5 was fabricated by hot-pressing of a spray dried mixture of α−Si3N4 and aluminium-isopropoxide solution. Phase composition, flexural strength and microstructure of a sintered body were investigated. Phases identified by XRD were β-Sialon and a small amount of O′-Sialon. The flexural strength (three-point bending) was about 1500 MN m−2. This value, about three times higher than that of β-Sialon fabricated from α-Si3N4 and α-Al2O3 powder, was mainly due to the homogeneous microstructure without large defects such like clusters of large grains. β-Sialon was heat treated at 2000 °C for 2 h in 4 M Pa N2 to develop elongated β-Sialon grains with high aspect ratio. Microstructure, flexural strength and fracture toughness (KIc) of it were investigated. Both strength andKIc were lower than those of hot-pressed sample, even though an elongated microstructure was achieved. This fact showed that the toughening of β-Sialon with elongated grains could not be achieved without grain boundary phase which resulted in a crack deflection.

Keywords

Polymer Microstructure Aspect Ratio Fracture Toughness Phase Composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. Jack,J. Mater. Sci. 11 (1976) 1135.Google Scholar
  2. 2.
    M. Mitomo et al., Yogyo-kyokai-shi 86 (1978) 526.Google Scholar
  3. 3.
    R. R. Wills, R. W. Stewart andJ. M. Wimmer,J. Amer. Ceram. Soc. 60 (1977) 64.Google Scholar
  4. 4.
    M. Mitomo andN. Kuramoto,Yogyo-kyokai-shi 87 (1979) 526.Google Scholar
  5. 5.
    M. H. Lewis et al., J. Mater. Sci. 12 (1977) 61.Google Scholar
  6. 6.
    S. Umebayashi et al., Yogyo-kyokai-shi 90 (1982) 615.Google Scholar
  7. 7.
    S. Umebayashi et al., ibid. 92 (1984) 35.Google Scholar
  8. 8.
    M. Mitomo et al., ibid. 88 (1980) 298.Google Scholar
  9. 9.
    A. Tsuge andK. Nishida,Amer. Ceram. Soc. Bull. 57 (1978) 424.Google Scholar
  10. 10.
    F. F. Lange,J. Amer. Ceram. Soc. 57 (1974) 84.Google Scholar
  11. 11.
    K. Kishi et al., Yogyo-kyyokai-shi 96 (1988) 698.Google Scholar
  12. 12.
    K. Kishi et al., ibid. 92 (1984) 231.Google Scholar
  13. 13.
    K. Kishi et al., ibid. 93 (1985) 629.Google Scholar
  14. 14.
    J. Heinrich andM. Bohman,Commun. Am. Ceram. Soc. 67 (1984) C-75.Google Scholar
  15. 15.
    G. Wotting andG. Ziegler,Ceram. Int. 10 (1984) 18.Google Scholar
  16. 16.
    K. Kishi, unpublished.Google Scholar
  17. 17.
    K. Niihara,Seramikkusu 20 (1985) 12.Google Scholar
  18. 18.
    L. J. Gauckler, H. L. Lukas andG. Peztow,J. Amer. Ceram. Soc. 58 (1975) 346.Google Scholar
  19. 19.
    Y. Matsuno, M. Ito andH. Okuda,Seramikkusu 16 (1981) 549.Google Scholar
  20. 20.
    E. Tani et al., J. Mater. Sci. Lett. 4 (1985) 1454.Google Scholar
  21. 21.
    M. H. Lewis et al., J. Mater. Sci. 12 (1977) 61.Google Scholar
  22. 22.
    M. H. Lewis et al. ibid. 15 (1980) 103.Google Scholar
  23. 23.
    E. Tani et al. Amer. Ceram. Soc. Bull. 65 (1986) 1311.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • K. Kishi
    • 1
  • S. Umebayashi
    • 1
  • E. Tani
    • 1
  1. 1.Government Industrial Research InstituteSagaJapan

Personalised recommendations