Pflügers Archiv

, Volume 373, Issue 2, pp 199–204 | Cite as

Masking, De Lange curves and integration time as revealed by the electroretinogram of a tree shrew (Tupaia chinensis)

  • J. M. Thijssen
  • H. J. Ter Laak
  • P. M. A. van Well
Excitable Tissues and Central Nervous Physiology
  • 49 Downloads

Abstract

Dynamical characteristics of the electroretinogram (ERG) of a tree shrew were measured. Since this animal has a cone dominated receptor population (95%) comparison to human photopic vision is obvious. The light source was chosen to stimulate the red cones of this deuteranopic animal predominantly. Masking experiments displayed a reasonable correspondence to human foveal psychophysics. De Lange curves and CFF values revealed a maximum sensitivity at 15–20 Hz, which is higher than is found for human vision.

A secondary maximum was observed in the De Lange curves at high adaptation levels, which is possibly due to interactions of the ERG components. The dependency of integration time on adaptation level appeared to be similar to known data of human psychophysics and electrophysiological data from Limulus receptor cells.

Key words

Electroretinogram Cones Dynamical properties Tree shrew (Tupaia chinensis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boynton, R. M.: Discrimination of homogeneous double pulses of light. In: Handbook of Physiology, Vol. VII/4, pp. 202–232. (D. Jameson, L. Hurvich, eds.). Berlin-Heidelberg-New York: Springer 1972Google Scholar
  2. Brown, K. T., Watanabe, K., Murakami, M.: The early and late receptor potentials of monkey cones and rods. Cold Spring Harbor Symp. Quant. Biol.30, 457–482 (1965)Google Scholar
  3. Coenen, A. M. L., Eijkman, E. G. J.: Optic tract and geniculate unit responses corresponding to human visual masking effects. Exp. Brain Res.15, 441–451 (1972)Google Scholar
  4. Crawford, B. H.: Visual adaptation in relation to brief conditioning stimuli. Proc. Roy. Soc. B134, 283–302 (1947)Google Scholar
  5. De Lange, H.: Research into the dynamic nature of the human foveacortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. J. Opt. Soc. Am.48, 777–784 (1958)Google Scholar
  6. Dieterich, C. E.: Die Feinstruktur der Photoreceptoren des Spitzhörnchens (Tupaia glis). Anat. Anz.125, Suppl. (1969)Google Scholar
  7. Dodge, F. A., Knight, B. W., Toyoda, J.: Voltage noise in Limulus visual cells. Science160, 88–90 (1968)Google Scholar
  8. Fricker, S. J.: Application of synchronous detector techniques for electroretinographic studies in patients with retinitis pigmentosa. Invest. Ophthal.10, 329–339 (1971)Google Scholar
  9. Graf, V.: De Lange characteristics for the fresh-water turtle chrysomys picta picta and the pigeon Columbia livia. Vision Res.13, 1815–1822 (1973)Google Scholar
  10. Grind, W. A. van de, Grüsser, O.-J., Lunkenheimer, H. U.: Temporal transfer porperties of the afferent visual system. Psychophysical, neurophysiological and theoretical investigations. In: Handbook of Sensory Physiology, Vol. VII/3a. pp. 431–573. (R. Jung, ed.). Berlin-Heidelberg-New York: Springer 1973Google Scholar
  11. Hafleigh, A. S., Williams, C. A.: Antigenic correspondence of serum albumines among the Primates. Science151, 1530–1535 (1966)Google Scholar
  12. Heck, J.: The flicker electroretinogram of the human eye. Acta Physiol. Scand.39, 158–166 (1957)Google Scholar
  13. Kahneman, D.: Method, findings and theory in studies of visual masking. Psychol. Bull.70, 404–425 (1968)Google Scholar
  14. Kelly, D. H.: Visual responses to time dependent stimuli. I. Amplitude sensitivity measurements. J. Opt. Soc. Am.51, 422–429 (1961)Google Scholar
  15. Kelly, D. H.: Flicker. In: Handbook of Physiology, Vol. VII/4. pp. 273–302. (D. Jameson, L. Hurvich, eds.). Berlin-Heidelberg-New York: Springer 1972Google Scholar
  16. Laak, H. J. ter: Electrophysiological investigations into luminance coding in the retina of a tree shrew (Tupaia chinensis). Thesis, University of Nijmegen (1975)Google Scholar
  17. Laak, H. J. ter, Thijssen, J. M., Vendrik, A. J. H.: A method for prolonged electrophysiological experiments with a tree shrew (Tupaia chinensis). Z. Versuchstierk.17, 195–204 (1975)Google Scholar
  18. Matin, L.: Critical duration, the differential luminance threshold, critical flicker frequency, and visual adaptation: a theoretical treatment. J. Opt. Soc. Am.58, 404–415 (1968)Google Scholar
  19. Ordy, J. M., Samorajski, T.: Visual acuity and ERE-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates. Vision Res.8, 1205–1225 (1968)Google Scholar
  20. Padmos, P., Norren, D. V.: The vector-voltmeter as a tool to measure ERG spectral sensitivity and dark adaptation. Invest. Ophthal.11, 783–788 (1972)Google Scholar
  21. Polson, M. C.: Spectral sensitivity and color vision inTupaia glis. Thesis, Indiana University (1968)Google Scholar
  22. Roufs, J. A. J.: Dynamic properties of Vision I. Experimental relationships between flicker and flash thresholds. Vision Res.12, 261–278 (1972)Google Scholar
  23. Schiller, P. H.: Behavioral and electrophysiological studies of visual masking. In: Information processing in the nervous system, pp. 141–166. (K. N. Leibovic, ed.). Berlin-Heidelberg-New York: Springer 1969Google Scholar
  24. Schwaier, A.: Breeding tupaias (Tupaia belangeri) in captivity. Z. Versuchstierk.15, 553–563 (1973)Google Scholar
  25. Thijssen, J. M., Laak, H. J. ter: Invariances of the cone-dominated ERG (tree shrew and man). In: New Developments in Ophthalmology, pp. 331–340. (A. F. Deutman, ed.). The Hague: Junk 1976Google Scholar
  26. Thijssen, J. M., Dongen, P. A. M. van, Laak, H. J. ter: Maintained activity of cells in the tree shrew's optic tract. Exp. Brain Res.25, 279–290 (1976)Google Scholar
  27. Tigges, J.: Untersuchungen über den Farbensinn vonTupaia glis (Diard. 1820). Z. Morph. Anthrop.53, 109–123 (1963)Google Scholar
  28. Tigges, J., Brooks, B. A., Klee, M. R.: ERG recordings of a Primate pure cone retina (Tupaia glis). Vision Res.7, 553–563 (1967)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. M. Thijssen
    • 1
    • 2
  • H. J. Ter Laak
    • 1
    • 2
  • P. M. A. van Well
    • 1
    • 2
  1. 1.Biophysics Laboratory of the Institute of OphthalmologyUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Department of Medical Physics and BiophysicsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations