Pflügers Archiv

, Volume 373, Issue 2, pp 175–178 | Cite as

Inability of myoglobin to increase in dystrophic skeletal muscle during daily exercise

  • F. W. Booth
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology

Abstract

An exercise program consisting of 80-min daily runs on a treadmill was performed by normal and dystrophic hamsters. Subgroups were sacrificed at various times during the 45-day program. Daily exercise resulted in a significant increase in the myoglobin concentration of gastrocnemius muscles in normal animals but not in dystrophic animals. In the exercise groups of hamsters, there were significant increases in the concentration of cytochrome c, a marker for respiratory capacity, in the gastrocnemius of both normal and dystrophic hamsters.

Key words

Myoglobin Dystrophy Exercise Cytochrome c Skeletal Muscle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, K. M., Fitts, R. H., Booth, F. W., Winder, W. W., Holloszy, J. O.: Depletion of muscle and liver glycogen during exercise. Pflügers Arch.354, 203–212 (1975)Google Scholar
  2. 2.
    Booth, F. W., Holloszy, J. O.: Cytochrome c turnover in rat skeletal muscles. J. Biol. Chem.252, 416–419 (1977)Google Scholar
  3. 3.
    Booth, F. W., Narahara, K. A.: Vastus lateralis cytochrome oxidase activity and its relationship to maximal oxygen consumption in man. Pflügers Arch.349, 319–324 (1974)Google Scholar
  4. 4.
    Demos, M. A., Gitin, E. L., Kagen, L. J.: Exercise myoglobinemia and acute exertional rhabomyolysis. Arch. Int. Med.134, 669–673 (1974)Google Scholar
  5. 5.
    Fitts, R. H., Booth, F. W., Winder, W. W., Holloszy, J. O.: Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am. J. Physiol.228, 1029–1033 (1975)Google Scholar
  6. 6.
    Fowler, W. M., Chowdhury, S. R., Pearson, E. M., Gardner, G., Bratton, R.: Changes in serum enzyme levels after exercise in trained and untrained subjects. J. Appl. Physiol.17, 943–946 (1962)Google Scholar
  7. 7.
    Goldbloom, D. E., Brown, W. D.: Myoglobin in control and dystrophic chicken muscle. Arch. Biochem. Biophys.147, 367–373 (1971)Google Scholar
  8. 8.
    Goldspink, D. F.: Age-related changes of RNA and DNA in muscles of normal and dystrophic hamsters. Life Sci.20, 57–64 (1977)Google Scholar
  9. 9.
    Goldspink, D. F., Goldspink, G.: Age-related changes in protein turnover and ribonucleic acid of the diaphragm muscle of normal and dystrophic hamsters. Biochem. J.162, 191–194 (1977)Google Scholar
  10. 10.
    Gornal, A. G., Bardawill, C. J., David, M. M.: Determination of serum proteins by means of the biuret reaction. J. Biol. Chem.177, 751–766 (1949)Google Scholar
  11. 11.
    Hadlow, W. J.: Animal myopathies. In: The striated muscle, pp. 364–409. (C. M. Pearson and F. K. Mostofi, eds.) Baltimore: Williams and Wilkins 1973Google Scholar
  12. 12.
    Homburger, F., Bajusz, E.: New models of human disease in Syrian hamsters. J. Am. Med. Assoc.212, 604–610 (1970)Google Scholar
  13. 13.
    Homburger, F., Nixon, C. W., Eppenberger, M., Baker, J. R.: Hereditary myopathy in the Syrian hamster: studies on pathogenesis. Ann. N. Y. Acad. Sci.138, 14–27 (1966)Google Scholar
  14. 14.
    Hoppeler, H., Luthi, P., Claassen, H., Weibel, E. R., Howald, H.: The ultrastructure of normal human skeletal muscle. A morphometric analysis of untrained men, women and well-trained orienteers. Pflügers Arch.344, 217–232 (1973)Google Scholar
  15. 15.
    Kagen, L. J.: Myoglobin, pp. 54–60 New York: Columbia University Press 1973Google Scholar
  16. 16.
    Kiessling, K.-H., Pilström, L., Bylund, A.-Ch., Saltin, B., Piehl, K.: Enzyme activities and morphometry in skeletal muscle of middle-aged men after training. Scand. J. Clin. Lab. Invest33, 63–69 (1974)Google Scholar
  17. 17.
    Lawrie, R. A.: Effect of enforced exercise on myoglobin concentration in muscle. Nature171, 1069–1070 (1953)Google Scholar
  18. 18.
    Nigro, G., Comi, L. I., Tota, B., Nigro, R.: Role of altered myoglobin in the aetiopathogenesis of progressive muscle dystrophy. In: Muscle Diseases, pp. 323–326 (J. N. Walton, N. Canal, and G. Scarlato, eds.) Amsterdam: Excerpta Medica 1970Google Scholar
  19. 19.
    Pattengale, P. K., Holloszy, J. O.: Augmentation of skeletal muscle myoglobin by a program of treadmill running. Am. J. Physiol.213, 783–785 (1967)Google Scholar
  20. 20.
    Perkoff, G. T., Tyler, F. H.: Estimation and physical properties of myoglobin in various species. Metabolism7, 751–759 (1958)Google Scholar
  21. 21.
    Reiss, D. J., Wooten, G. F.: The relationship of blood flow to myoglobin, capillary density, and twitch characteristics in red and white skeletal muscle in cat. J. Physiol. (Lond.)210, 121–135 (1970)Google Scholar
  22. 22.
    Reynafarje, B.: Simplified method for the determination of myoglobin. J. Lab. Clin Med.61, 138–145 (1963)Google Scholar
  23. 23.
    Schimke, R. T.: Methods for analysis of enzyme synthesis and degradation in animals tissues. In: Methods in Enzymology, Vol. 40, pp. 241–266 (B. W. O'Malley, and J. G. Hardman, eds.), New York: Academic Press 1975Google Scholar
  24. 24.
    Williams, J. N., Thorp, S. L.: Re-evaluation of cytochrome c concentrations in rat organs using a new method for cytochrome c. Biochim. Biophys. Acta189, 25–28 (1969)Google Scholar
  25. 25.
    Wittenberg, B. A., Wittenberg, J. B., Caldwell, P. R. B.: Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem.250, 9038–9043 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • F. W. Booth
    • 1
  1. 1.Department of PhysiologyThe University of Texas Medical School at HoustonHoustonU.S.A.

Personalised recommendations