Das Verhalten der ninhydrin-positiven Stoffe im Schwanzgewebe vonXenopus-Larven während Wachstum und Metamorphose

  • J. -C. Perriard
  • R. Weber

The behaviour of ninhydrin-positive substances in the tail tissue ofXenopus larvae during growth and metamorphosis


  1. 1.

    In order to characterize further the biochemical events of tissue resorption in the tadpole tail the pattern of free amino acids and related substances was investigated by using ion-exchange column chromatography of methanol extracts prepared from tails ofXenopus larvae during prometamorphosis and climax. For the purpose of comparison wet and dry weight, content of protein nitrogen and total nitrogen (TN) as well as catheptic activity were also determined.

  2. 2.

    In tails of prometamorphic tadpoles 30 fractions of ninhydrin-positive substances have been found, of which alanine, glutamine-asparagine, carnosine, lysine, glycine, glutamic acid showed highest concentrations (>50nM/mg TN). Total concentration of ninhydrin-positive substances increases during growth (prometamorphosis), but decreases during early stages of tail involution (climax) without significant qualitative changes. During either period the relative concentrations of individual fractions vary independently of each other.

  3. 3.

    From a comparison with protein and total nitrogen content in tails, it is obvious that high levels of ninhydrin-positive substances are characteristic of growing rather than regressing tail tissues.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briegel-Hanimann, F.: Ionenaustausch-chromatographische Untersuchungen der freien Aminosäuren und Derivate während der Embryogenese bei Amphibien. Rev. suisse Zool.76, 865–901 (1969).Google Scholar
  2. Chen, P. S.: Metabolic changes in free amino-acids and peptides during urodele development. Exp. Cell Res.10, 675–686 (1956).Google Scholar
  3. Chen, P. S.: Amino-acid and protein metabolism in insect development. Adv. Ins. Physiol.3, 53–132 (1966).Google Scholar
  4. Deuchar, E. M.: Amino-acids in developing tissues ofXenopus laevis. J. Embryol. exp. Morph.4, 327–346 (1956).Google Scholar
  5. —: The roles of amino-acids in animal embryogenesis. Biol. Rev.37, 378–421 (1962).Google Scholar
  6. Eeckhout, Y.: Contribution à l'étude de la métamorphose caudale des amphibiens anoures. Thèse, Université Catholique Louvain, Fac. Sci. (1965).Google Scholar
  7. —: Etude biochimique de la métamorphose caudale des amphibiens anoures. Acad. roy. belg. Cl. Sci. Mém.38, 1–113 (1969).Google Scholar
  8. Hahn, H. P. von, Herrmann, H.: Effects of amino acid analogs and eatheptic activity of chick embryo explants. Develop. Biol.5, 309–327 (1962).Google Scholar
  9. Heyde, H. C. van der: Studien über organische Regulation II.: Die Einschmelzung des Schwanzes der Froschlarven. Biol. Zbl.42, 419–428 (1922).Google Scholar
  10. Kit, S.: Intermediary metabolism of building blocks involved in growth. In: Fundamental aspects of normal and malignant growth (W. W. Nowinski, ed.), p. 1–136. Amsterdam: Elsevier 1960.Google Scholar
  11. Liosner, L. D., Blacher, L. J.: Untersuchungen über die Mechanik der Funktiogenese bei der Amphibienmetamorphose IV.: Veränderungen des Stickstoffgehaltes in den sich resorbierenden Geweben und im Blute metamorphosierender Axolotln und Kaulquappen. Biol. Zbl.52, 697–704 (1932).Google Scholar
  12. Marty, A., Weber, R.: Das Verhalten der Enzyme des Energiestoffwechsels im Schwanz der metamorphosierenden Xenopuslarve. Helv. physiol. pharmacol. Acta26, 62–78 (1968).Google Scholar
  13. Morse, M.: On the amino-acid content of involuting frog larvae. Proc. Soc. exp. Biol, (N.Y.)11, 184–185 (1914).Google Scholar
  14. Morse, M. W.: Factors involved in the atrophy of the organs of the larval frog. Biol. Bull.34, 149–166 (1918).Google Scholar
  15. Nakagawa, H., Lindsay, R. H., Cohen, P. P.: Composition and labeling patterns of “free” and protein amino-acids inRana catesbeiana tadpoles and frogs. Arch. Biochem.106, 299–306 (1964).Google Scholar
  16. Nieuwkoop, P. D., Faber, J.: Normal table ofXenopus laevis (Daudin). Amsterdam: North Holland 1956.Google Scholar
  17. Roberts, E., Simonsen, D. G.: Free amino-acids and related substances in normal and neoplastic tissues. In: Amino-acids, proteins and cancer biochemistry (J. T. Edsall, ed.) p. 121–146. New York: Academic Press 1960.Google Scholar
  18. Spackman, D. H., Stein, W. H., Moore, S.: Automatic recording apparatus for use in the chromatography of amino-acids. Analyt. Chem.30, 1190–1206 (1958).Google Scholar
  19. Weber, R.: On the biological function of cathepsins in tail tissue of Xenopus larvae. Experientia (Basel)13, 153–155 (1957a).Google Scholar
  20. —: Die Kathepsinaktivität im Schwanz von Xenopuslarven während Wachstum und Metamorphose. Rev. suisse Zool.64, 326–336 (1957b).Google Scholar
  21. —: Behaviour and properties of acid hydrolases in regressing tails of tadpoles during spontaneous and induced metamorphosisin vitro. In: Ciba Foundation Symp. Lysosomes (A. V. S. de Reuck and M. P. Cameron, eds.) p. 282–300. London: Churchill Ltd. 1963a.Google Scholar
  22. —: Zur Aktivierung der Kathepsine im Schwanzgewebe von Xenopuslarven bei spontaner und l in vitro“ induzierter Rückbildung. Helv. physiol. pharmacol. Acta21, 277–291 (1963b).Google Scholar
  23. —: Biochemistry of amphibian metamorphosis. In: The biochemistry of animal development (R. Weber ed.) vol. 2, p. 227–337. New York: Academic Press 1967.Google Scholar
  24. —: Tissue involution and lysosomal enzymes during anuran metamorphosis. In: Lysosomes in biology and pathology (J. T. Dingle and H. B. Fell, eds.) p. 437–461. Amsterdam: North Holland 1969.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • J. -C. Perriard
    • 1
  • R. Weber
    • 1
  1. 1.Zoologisches Institut, Abteilung für ZellbiologieUniversität BernSchweiz

Personalised recommendations