Pflügers Archiv

, Volume 355, Issue 1, pp 85–94 | Cite as

Responses of neurons of lizard's, lacerta viridis, vestibular nuclei to electrical stimulation of the ipsi- and contralateral VIIIth nerves

  • A. Richter
  • W. Precht
  • S. Ozawa


Field and intracellular potentials were recorded in the vestibular nuclei of the lizard following stimulation of the ipsi-and contralateral vestibular nerves. The field potentials induced by ipsilateral VIIIth nerve stimulation consisted of an early negative or positive-negative wave (presynaptic component) followed by a slow negativity (transsynaptic component). The spatial distribution of the field potential complex closely paralleled the extension of the vestibular nuclei. Mono- and polysynaptic EPSPs were recorded from vestibular neurons after ipsilateral VIIIth nerve stimulation. In some neurons early depolarizations preceded the EPSPs. These potentials may be elicited by electrical transmission. Often spikelike partial responses were superimposed on the EPSPs. It is assumed that these potentials represent dendritic spikes.

Contralateral VIIIth nerve stimulation generated disynaptic and polysynaptic IPSPs in some neurons and EPSPs in others. The possible role of commissural inhibition in phylogeny is discussed.

In a group of vestibular neurons stimulation of the ipsilateral VIIIth nerve evoked full action potentials with latencies ranging from 0.25–1.1 msec. These potentials are caused by antidromic activation of neurons which send their axons to the labyrinth.

Key words

Reptile Vestibular Neurons Vestibular Efferents Commissural Inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brookhart, J. M., Fadiga, E.: Poten tial fields initiated during monosynaptic activation of frog motoneurones. J. Physiol. (Lond.)150, 633–655 (1960)Google Scholar
  2. Eccles, J. C., Libet, B., Young, R. R.: The behavior of chromatolysed motoneurones studied by intracellular recording. J. Physiol. (Lond.)143, 11–40 (1958)Google Scholar
  3. Gacek, R. R., Lyon, M.: The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta oto-laryng. (Stockh.)77, 92–101 (1974)Google Scholar
  4. Ito, M., Hongo, T., Okada, Y.: Vestibular-evoked postsynaptic potentials in Deiters' neurones. Exp. Brain. Res.7, 214–230 (1969)Google Scholar
  5. Kawai, N., Ito, M., Nozue, M.: Postsynaptic influences on the vestibular non-Deiters nuclei from primary vestibular nerve. Exp. Brain Res.8, 190–200 (1969)Google Scholar
  6. Kuno, M., Llinás, R.: Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat. J. Physiol. (Lond.)210, 807–821 (1970)Google Scholar
  7. Larsell, O.: The comparative anatomy and histology of the cerebellum from myxinoids through birds, J. Jansen, ed. The cerebellum, pp. 179–216. Minneapolis: Minnesota Press 1967Google Scholar
  8. Llinás, R., Nicholson, C.: Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J. Neuropysiol.34, 532–551 (1971)Google Scholar
  9. Mano, M., Oshima, T., Shimazu, H.: Inhibitory commissural fibres interconnecting the bilateral vestibular nuclei. Brain Res.8, 378–382 (1968)Google Scholar
  10. Mehler, W. R.: Comparative anatomy of the vestibular nuclear complex in submammalian vertebrates. In: Basic aspects of central vestibular mechanisms. A. Brodal and O. Pompeiano, eds., Progr. Brain Res.37, 55–67 (1972)Google Scholar
  11. Ozawa, S., Precht, W., Shimazu, H.: Crossed effects on central vestibular neurons in the horizontal canal system of the frog. Exp. Brain Res.19, 394–405 (1974)Google Scholar
  12. Precht, W., Richter, A., Ozawa, S., Shimazu, H.: Intracellular study of frog's vestibular neurons in relation to the labyrinth and spinal cord. Exp. Brain Res.19, 377–393 (1974)Google Scholar
  13. Precht, W., Shimazu, H.: Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. J Neurophysiol.28, 1014–1028 (1965)Google Scholar
  14. Purpura, D. P.: Comparative physiology of dendrites. In: The neurosciences: A study program, pp. 372–393. G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds. New York: Rockefeller Univ. Press 1967Google Scholar
  15. Shimazu, H., Precht, W.: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol.28, 991–1013 (1965)Google Scholar
  16. Shimazu, H., Precht, W.: Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J. Neurophysiol.29, 467–492 (1966)Google Scholar
  17. Shimazu, H., Smith, C. M. Cerebellar and labyrinthine influences on single vestibular neurons identified by natural stimuli. J. Neurophysiol.34, 493–508 (1971)Google Scholar
  18. Spencer, W. A., Kandel, E. R.: Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J. Neurophysiol.24, 272–285 (1961)Google Scholar
  19. Thomas, R. C., Wilson, V. J.: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.)206, 211–213 (1965)Google Scholar
  20. Weston, J. K.: The reptilian vestibular and cerebellum gray with fibre connections. J. comp. Neurol.65, 93–199 (1936)Google Scholar
  21. Wilson, V. J., Wylie, R. M.: A short-latency labyrinthine input to the vestibular nuclei in the pigeon. Science168, 124–127 (1970)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • A. Richter
    • 1
  • W. Precht
    • 1
  • S. Ozawa
    • 1
  1. 1.Neurobiologische AbteilungMax-Planck-Institut für HirnforschungFrankfurt (Main)(FRG)

Personalised recommendations