Advertisement

Pflügers Archiv

, Volume 354, Issue 3, pp 241–248 | Cite as

The intrarenal distribution of125I-albumin in the Syrian hamster

  • P. Möller
  • R. Taugner
Article

Summary

The intrarenal distribution of radioiodinated human serum albumin (125RISA) after intravenous injection was studied in Syrian hamsters by scintillation counting and frozen section autoradiography.

After 15, 30, and 60 min the virtual plasma albumin space in the renal cortex of the hamster represented 6.49, 7.13, and 8.06% respectively of the kidney tissue volume. From the cortex to the renal papilla the albumin space increased to about 30% of the tissue volume. In comparison to this the albumin space in the renal cortex of the rat was about 20%, and in the renal papilla about 33% (11).

Frozen section autoradigraphy indicated that the distribution of radioalbumin in the renal cortex of the Syrian hamster is limited mainly to the kidney vessels, being especially noticeable in the glomerular capillaries. Toward the papilla increasingly greater (mainly extratubular) activity could be observed not only intravascularly but also interstitially. In the cortex of the rat kidney, on the other hand, radioactive albumin was accumulated (probably by filtration and reabsorption) predominantly in the proximal tubular epithelium.

Within 30 min the kidneys of the rat excreted more than 10 times as much125I than the hamster kidneys. These results (substantially less cortical accumulation and urinary excretion of radioalbumin in the Syrian hamster) indicate that, in contrast to the rat, obviously much less albumin is filtered (and then accumulated by proximal reabsorption) by the Syrian hamster glomeruli. This suggests that the Syrian hamster kidney is more suitable than the rat kidney for determining the interstitial, cortical, albumin space.

Key words

125Iodine-human Albumin Albumin Filtration Protein Accumulation Interstitial, Cortical Albumin Space Syrian Hamster 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bethge, H., Ochwadt, B., Weber, R.: Der scheinbare Verteilungsraum von131J-Albumin in verschiedenen Schichten der Niere bei Diurese und Antidiurese. Pflügers Arch. ges. Physiol.276, 236 (1962)Google Scholar
  2. 2.
    Blöhmer, A., Karsunky, K.-P., Metz, J., Taugner, R.: Zum Schicksal, vor allem zur Nierenausscheidung von exogenem Hämoglobin und Myoglobin bei der Ratte. Z. ges. exp. Med.155, 112 (1971)Google Scholar
  3. 3.
    Brenner, B. M., Berliner, R. W.: Relationship between extracellular volume and fluid reabsorption by the rat nephron. Amer. J. Physiol.217, 6 (1969)Google Scholar
  4. 4.
    Carone, F. A., Everett, B. A., Blondeel, N. J., Stolarczyk, J.: Renal localization of albumin and its function in the concentrating mechanism. Amer. J. Physiol.212, 387 (1967)Google Scholar
  5. 5.
    Cortney, M. A., Salvin, L. L., Weiss, D. D.: Renal tubular protein absorption in the rat. J. clin. Invest.49, 1 (1970)Google Scholar
  6. 6.
    Gärtner, K., Banning, E., Vogel, G., Ulbrich, M.: The identity of interstitial fluid and hilar lymph in the kidney. Pflügers Arch.343, 331 (1973)Google Scholar
  7. 7.
    Gärtner, K., Vogel, G., Ulbrich, M.: Untersuchung zur Penetration von Makromolekülen (Polyvinylpyrrolidon) durch glomeruläre und postglomeruläre Capillaren in den Harn und die Nierenlymphe und zur Größe der extravasalen Umwälzung von131J-Albumin im Interstitium der Niere. Pflügers Arch. ges. Physiol.298, 305 (1968)Google Scholar
  8. 8.
    Gibson, J. G., Seligman, A. M., Peacock, W. C., Aub, J. C., Fine, J., Evans, R. D.: The distribution of red cells and plasma in large and minute vessels of the normal dog, determined by radioactive isotopes of iron and iodine. J. clin. Invest.25, 848 (1946)Google Scholar
  9. 9.
    Katz, J., Rosenfeld, S., Sellers, A. L.: Role of kidney in plasma albumin catabolism. Amer. J. Physiol.198, 814 (1960)Google Scholar
  10. 10.
    Källskog, Ö., Wolgast, M.: Oncotic and hydrostatic forces operative over the peritubular capillary membrane. Acta physiol scand.87, 26A (1973)Google Scholar
  11. 11.
    Kömpf, B., Karsunky, K.-P., Taugner, R.: Die Verteilung von131J-Albumin in der Niere von Ratten und Kininchen. Pflügers Arch.328, 205 (1971)Google Scholar
  12. 12.
    Law, R.: Intrarenal distribution of125I-PVP and51Cr-labelled red cells in hydropenic and polyuric rabbits. Pflügers Arch.334, 303, (1972)Google Scholar
  13. 13.
    Lilienfield, L. S., Rose, J. C., Lassen, N. A.: Diverse distribution of red cells and albumin in the dog kidney. Circulat. Res.6, 810 (1958)Google Scholar
  14. 14.
    Pappenheimer, J. R., Kinter, W. B.: Hematocrit ratio of blood within mammalian kidney and its significance for renal hemodynamics. Amer. J. Physiol.185, 377 (1956)Google Scholar
  15. 15.
    Rasmussen, S. N.: Intrarenal red cell and plasma volumes in the non-diuretic rat. Pflügers Arch.342, 61 (1973)Google Scholar
  16. 16.
    Rasmussen, S. N.: Effects of osmotic diuresis and water diuresis on intrarenal red cell and plasma volumes in the rat. Pflügers Arch.348, 1 (1974)Google Scholar
  17. 17.
    Slotkoff, L. M., Lilienfield, L. S.: Extravascular renal albumin. Amer. J. Physiol.212, 400 (1967)Google Scholar
  18. 18.
    Taugner, R., Iravani, J., Taugner, G., Egidy, H. v., Braun, A.: Zur autoradiographischen Lokalisation der Phosphatrückresorption in der Katzenniere. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak.241, 393 (1961)Google Scholar
  19. 19.
    Taugner, R., Wagenmann, U.: Serienmäßige Herstellung von Gefrierschnitt-autoradiogrammen mit optimalem Kontakt. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak.234, 336 (1958)Google Scholar
  20. 20.
    Thurau, K., Henne, G.: Dynamik des Harnstromes in der Henleschen Schleife der Goldhamsterniere. Pflügers Arch. ges. Physiol.278, 45 (1963)Google Scholar
  21. 21.
    Ulfendahl, H. R.: Distribution of red cells and plasma in rabbit and cat kidney. Acta physiol. scand.56, 42 (1962)Google Scholar
  22. 22.
    Vogel, G., Ulbrich, M., Gärtner, K.: Über den Austausch des extravasalen Plasma-Albumins (131J-Albumin) der Niere mit dem Blut und dem Abfluß von Makromolekülen (PVP) mit der Nierenlymphe bei normaler und durch Furosemid gehemmter tubulärer Reabsorption. Untersuchungen zur Funktion des Niereninterstitiums und der Bedeutung des tubulären Reabsorbates für die interstitielle Flüssigkeit. Pflügers Arch.305, 47 (1969)Google Scholar
  23. 23.
    Wilde, W. S., Hill, J. H., Wilson, E., Schielke, G. P.: Exchange of free and albumin-bound Evans blue in interstititum of hamster kidney. Amer. J. Physiol.220, 1991 (1971)Google Scholar
  24. 24.
    Wolgast, M., Persson, E., Schnermann, J., Ulfendahl, H., Wunderlich, P.: Colloid osmotic pressure of the subcapsular interstitial fluid of rat kidneys during hydropenia and volume expansion. Pflügers Arch.340, 123 (1973)Google Scholar
  25. 25.
    Wright, F. S., Giebisch, G.: Glomerular filtration in single nephrons, Editorial Review. Kidney Intern.1, 201 (1972)Google Scholar
  26. 26.
    Wunderlich, P., Persson, E., Schnermann J., Ulfendahl, H., Wolgast, M.: Hydrostatic pressure in the subcapsular interstitial space of rat and dog kidneys. Pflügers Arch.328, 307 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • P. Möller
    • 1
  • R. Taugner
    • 1
  1. 1.I. Physiologisches Institut der UniversitätHeidelbergGermany

Personalised recommendations