Pflügers Archiv

, Volume 354, Issue 3, pp 229–239 | Cite as

PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron

  • D. Chabardès
  • M. Imbert
  • A. Clique
  • M. Montégut
  • F. Morel


PTH sensitive adenylate cyclase activity was measured in 9 different segments of the nephron, isolated by microdissection from collagenase-treated rabbit kidney slices.

The enzyme of the following segments was stimulated by PTH, 1 U/ml: PCT. (proximal convoluted tubule); PR (pars recta); CAL (cortical portion of the thick ascending limb); DCT (distal convoluted tubule); BCT (first, branched portion of the collecting tubule); the segments which did not respond to PTH were: TDL (thin descending limb); MAL (medullary portion of the thick ascending limb); CCT (cortical portion of the collecting tubule distally adjacent to BCT); MCT (collecting tubule from the outer medulla).

PTH sensitive adenylate cyclase per mm tubule in PR was half that measured in PCT.

Half maximal stimulation corresponded to 50–100 mU/ml PTH (1–2×10−8M) in both PCT and PR, and to about 350 mU/ml in CAL. PTH (1 U/ml) stimulation factors ranged from 5 to 60 depending on the structures.

It is concluded that in addition to PCT and PR, CAL and BCT might be target structures involved in the physiological actions of PTH on the kidney.

Key words

Adenylcyclase PTH Nephron Segments Rabbit Kidney 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agus, Z. S., Gardner, L. B., Beck, L. H., Goldberg, M.: Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium and phosphate. Amer. J. Physiol.224, 1143 (1973)Google Scholar
  2. 2.
    Amiel, C., Kuntziger, H., Richet, G.: Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroid-ectomized rat. Evidence for distal absorption. Pflügers Arch.317, 93 (1970)Google Scholar
  3. 3.
    Beck, N. P., Derubertis, F. R., Michelis, M. F., Fusco, R. D., Field, J. B., Davis, B. B.: Effect of prostaglandin E1 on certain renal actions of parathyroid hormone. J. clin. Invest.51, 2352 (1972)Google Scholar
  4. 4.
    Beck, L. H., Goldberg, M.: Effects of acetazolamide and parathyroidectomy on renal transport of sodium, calcium and phosphate. Amer. J. Physiol.224, 1136 (1973)Google Scholar
  5. 5.
    Bockaert, J., Roy, C., Jard, S.: Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells. J. biol. Chem.247, 7073 (1972)Google Scholar
  6. 6.
    Buckle, R. M., Aurbach, G. D., Potts, J. T.: The use of radioimmunoassay of parathyroidhormone in the assessment of parathyroid glandular activity. In: Protein and polypeptide hormones. Part 2. M. Margonlies, ed., p. 389. Amsterdam: Excerpta medica foundation 1968Google Scholar
  7. 7.
    Butlen, D., Jard, S.: Renal handling of 3′-5′-cyclic AMP in the rat. The possible role of luminal 3′-5′-cyclic AMP in the tubular reabsorption of phosphate. Pflügers Arch.331, 172 (1972)Google Scholar
  8. 8.
    Canterbury, J. M., Levey, G. S., Reiss, E.: Activation of renal cortical adenylate cyclase by circulating immunoreactive parathyroid hormone fragments. J. clin. Invest.52, 524 (1973)Google Scholar
  9. 9.
    Chase, L. R., Aurbach, G. D.: Parathyroid function and the renal excretion of 3′5′-adenylic acid. Proc. nat. Acad. Sci. (Wash.)58, 518 (1967)Google Scholar
  10. 10.
    Chase, L. R., Aurbach, G. D.: Renal adenyl cyclase: Anatomically separate sites for parathyroid hormone and vasopressin. Science159, 545 (1968)Google Scholar
  11. 11.
    Frick, A.: Proximal tubular reabsorption of inorganic phosphate during saline infusion in the rat. Amer. J. Physiol.223, 1034 (1972)Google Scholar
  12. 12.
    Habener, J. F., Powell, D., Murray, T. M., Mayer, G. P., Potts, J. T., Jr.: Parathyroid hormone. Secretion and metabolism in vivo. Proc. nat. Acad. Sci. (Wash.)68, 2986 (1971)Google Scholar
  13. 13.
    Imbert, M., Chabardès, D., Montégut, M., Clique, A., Morel, F.: Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflügers Arch.354, 213–228 (1975)Google Scholar
  14. 14.
    Imbert, M., Chabardès, D., Montégut, M., Clique, A., Morel, F.: Vasopressin dependent adenylate cyclase in single segments of rabbit tubule. Pflügers Arch., submitted for publicationGoogle Scholar
  15. 15.
    Knox, F. G., Schneider, E. G., Willis, L. R., Strandhoy, J. W., Ott, C. E.: Site and control of phosphate reabsorption by the kidney. Kidney Intern.3, 347 (1973)Google Scholar
  16. 16.
    Kuntziger, H., Amiel, C., Gaudebout, C.: Phosphate handling by the rat nephron during saline diuresis. Kidney Intern.2, 318 (1972)Google Scholar
  17. 17.
    Kurokawa, K., Massry, S. G.: Evidence for two separate adenyl cyclase systems responding independently to parathyroid hormone and β-adrenergic agents in the renal cortex of the rat. Proc. Soc. exp. Biol. (N.Y.)143, 123 (1973)Google Scholar
  18. 18.
    Lassiter, W. E., Gottschalk, C. W., Mylle, M.: Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Amer. J. Physiol.204, 771 (1963)Google Scholar
  19. 19.
    Le Grimellec, C., Roinel, N., Morel, F.: Simultaneous Mg, Ca, P, K, Na, and Cl analysis in rat tubular fluid. III. During acute Ca plasma loading. Pflügers Arch.346, 171 (1974)Google Scholar
  20. 20.
    Le Grimellec, C., Roinel, N., Morel, F.: Simultaneous Mg, Ca, P, K, and Cl analysis in rat tubular fluid. IV. During acute phosphate plasma loading. Pflügers Arch.346, 189 (1974)Google Scholar
  21. 21.
    Maesaka, J. K., Levitt, M. F., Abramson, R. G.: Effect of saline infusion on phosphate transport in intact and thyroparathyroídectomized rats. Amer. J. Physiol.225, 1421 (1973)Google Scholar
  22. 22.
    Marcus, R. A., Aurbach, G. D.: Bioassay of parathyroid hormonein vitro with a stable preparation of adenyl cyclase from rat kidney. Endocrinology85, 801 (1969)Google Scholar
  23. 23.
    Melson, G. L., Chase, L. R., Aurbach, G. D.: Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules. Endocrinology86, 511 (1970)Google Scholar
  24. 24.
    Murad, F., Brewer, H. B., Jr., Vaughan, M.: Effect of thyrocalcitonin on adenosine 3′-5′-cyclic phosphate formation by rat kidney and bone. Proc. nat. Acad. Sci. (Wash.)65, 446 (1970)Google Scholar
  25. 25.
    Murayama, Y., Morel, F., Le Grimellec, C.: Phosphate, calcium and magnesium transfers in proximal tubules and loops of Henle, as measured by single nephron microperfusion experiments in the rat. Pflügers Arch.333, 1 (1972)Google Scholar
  26. 26.
    Ramachandran, J., Lee, V.: Divergent effects of 0-nitrophenyl sulfenyl ACTH on rat and rabbit fat cell adenyl cyclases. Biochem. biophys. Res. Commun.41, 358 (1970)Google Scholar
  27. 27.
    Rasmussen, H., Pechet, M., Fast, D.: Effect of dibutyryl cyclic adenosine 3′,5′-Monophosphate, theophylline, and other nucleotides upon calcium and phosphate metabolism. J. clin. Invest.47, 1843 (1968)Google Scholar
  28. 28.
    Schneider, E. G., Strandhoy, J. W., Willis, L. R., Knox, F. G.: Relationship between proximal sodium reabsorption and excretion of calcium, magnesium and phosphate. Kidney Intern.4, 369 (1973)Google Scholar
  29. 29.
    Wen, S. F.: Micropuncture studies of phosphate transport in the proximal tubule of the dog. J. clin. Invest.53, 143 (1974)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • D. Chabardès
    • 1
  • M. Imbert
    • 1
  • A. Clique
    • 1
  • M. Montégut
    • 1
  • F. Morel
    • 1
  1. 1.Laboratoire de Physiologie CellulaireCollège de FranceParisFrance

Personalised recommendations