Pflügers Archiv

, Volume 392, Issue 1, pp 67–71 | Cite as

Analysis of the ouabain-induced increase in transepithelial electrical resistance in the goldfish intestinal mucosa

  • J. A. Groot
  • H. Albus
  • R. Bakker
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands

Abstract

  1. 1.

    The ouabain-induced increase in transmural resistance of goldfish intestinal mucosa stripped free from underlying muscular layers is analysed by comparing the resistance increase in normal and in low chloride saline, the resistance increase induced by anaerobic conditions and the resistance increase provoked by hypotonicity.

     
  2. 2.

    It is concluded that the collapse of the lateral intercellular space is the prime reason for the resistance increase and that the lateral intercellular space is maintained dilated by a ouabain-sensitive solute transport mechanism.

     
  3. 3.

    This mechanism can be either a rheogenic or a neutral Na/K-pump. In the latter case additional conditions have to be specified concerning values for ion concentrations in the lateral intercellular space and in the unstirred layer adjacent to the luminal membrane.

     
  4. 4.

    There are no indications for a chloride dependent mechanism involved in the maintenance of the width of the lateral intercellular spaces in the goldfish intestinal mucosa.

     

Key words

Goldfish intestinal mucosa Ouabain Transepithelial resistance Cell volume Hypotonicity Anaerobic conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albus H, Groot JA, Siegenbeek van Heukelom J (1979) Effects of glucose and ouabain on transepithelial electrical resistance and cell volume in stripped and unstripped goldfish intestine. Pfügers Arch 383:55–66Google Scholar
  2. 2.
    Armstrong WMcD, Byrd BJ, Cohen ES, Cohen SJ, Hamang PH, Myers CJ (1975) Osmotically induced electrical changes in isolated bullfrog small intestine. Biochim Biophys Acta 401:137–151Google Scholar
  3. 3.
    Bakker R, Albus H (1981) Analysis of electrophysiological phenomena upon glucose addition to the mucosal side of isolated intestinal mucosa of the goldfish. Abstract of the 4th meeting of the European Intestinal Transport Group. Gastroenterol Clin Biol (in press)Google Scholar
  4. 4.
    Bakker R, Siegenbeek van Heukelom J (1979) Electrogenic processes in membranes of the goldfish intestine. Gastroenterol Clin Biol 3:170Google Scholar
  5. 5.
    Blom H, Helander HF (1977) Quantitative elctron microscopical studies on in vitro incubated rabbit gallbladdr epithelium. J Membr Biol 37:45–61Google Scholar
  6. 6.
    Diamond JM, Bossert WH (1967) Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083Google Scholar
  7. 7.
    Curci S, Frömter E (1979) Micropuncture of lateral intercellular space of necturus gallbladder to determine space fluid K+ concentration. Nature 278:355–357Google Scholar
  8. 8.
    Dibona DR, Civan MM (1970) The effect of smooth muscles on the intercellular spaces in toad urinary bladder. J Cell Biol 46:235–224Google Scholar
  9. 9.
    Field M, Karnaky KJ, Smith PL, Bolton EJ, Kinter WB (1978) Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. I. Functional and structural properties of cellular and paracellular pathways for Na and Cl. J Membr Biol 42:265–293Google Scholar
  10. 10.
    Glynn IM, Karlish SJD (1975) The sodium pump. Annu Rev Physiol 37:13–55Google Scholar
  11. 11.
    Groot JA (1980) Changes in ion content in isolated goldfish intestinal epithelium upon replacement of sodium or chloride in the bathing solution. Proc Intern Union Physiol Sciences XIV:448Google Scholar
  12. 12.
    Groot JA (1981) Cell volume regulation of goldfish intestinal mucosa. Pflügers Arch 392:57–66Google Scholar
  13. 13.
    Groot JA, Albus H, Siegenbeek van Heukelom J (1979) A mechanistic explanation of the effect of potassium on goldfish intestinal transport. Pflügers Arch 379:1–9Google Scholar
  14. 14.
    Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308Google Scholar
  15. 15.
    Lutz MD, Cardinal J, Burg MB (1973) Electrical resistance of renal tubule perfused in vitro. Am J Physiol 225:729–734Google Scholar
  16. 16.
    Moreno JH, Diamond JM (1974) Discrimination of monovalent inorganic cations by tight junctions of gallbladder epithelium. J Membr Biol 15:277–318Google Scholar
  17. 17.
    Okada Y, Tsuchiya W, Irimajiri A, Inouye A (1977) Electrical properties and active solute transport in rat small intestine. J Membr Biol 31:205–219Google Scholar
  18. 18.
    Renfo JL, Miller DS, Karnaky KJ, Kinter WB (1976) Na−K-ATPase localization in teleost urinary bladder by3H ouabain autoradiography. Am J Physiol 231:1735–1743Google Scholar
  19. 19.
    Reuss L (1979) Electrical properties of the cellular transepithelial pathway in necturus gallbladder. III. Ionic permeability of the basolateral membrane. J Membr Biol 47:239–259Google Scholar
  20. 20.
    Rose RC, Nahrwold DL, Koch MJ (1977) Electrical potential profile in rabbit ileum: role of rheogenic Na transport. Am J Physiol 232:E5-E12Google Scholar
  21. 21.
    Rose RC, Nahrwold DL (1980) Electrolyte transport in necturus gallbladder: the role of rheogenic Na transport. Am J Physiol 238:G358-G365Google Scholar
  22. 22.
    Schultz SG (1977) Sodium coupled solute transport by small intestine: a status report. Am J Physiol 233:E249-E254Google Scholar
  23. 23.
    Schultz SG (1978) Is a coupled Na−K exchange “pump” involved in active transepithelial Na transport? A status report. In: Hoffman JF (ed) Membrane transport processes, Vol 1. Raven Press, New York, p 213Google Scholar
  24. 24.
    Schultz SG, Frizzell RA, Nellans HN (1974) Ion transport by mammalian small intestine. Annu Rev Physiol 36:51–91Google Scholar
  25. 25.
    Shindo T, Spring KR (1981) Chloride movement across the basolateral membrane of proximal tubule cells. J Membr Biol 58:35–42Google Scholar
  26. 26.
    Spring KR, Hope A (1979) Fluid transport and the dimensions of cells and interspaces of living necturus gallbladder. J Gen Physiol 73:287–305Google Scholar
  27. 27.
    Zeuthen T (1981) On the effects of amphotericin B and ouabain on the electrical potentials of necturus gallbladder. J Membr Biol 60:167–169Google Scholar
  28. 28.
    Zuidema T, Groot JA, Siegenbeek van Heukelom J (1981) Chloride transport in the isolated intestinal mucosa of the goldfish. Proc 22nd Dutch Fed Meeting, p 514Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. A. Groot
    • 1
  • H. Albus
    • 1
  • R. Bakker
    • 1
  1. 1.Department of Animal PhysiologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations