Skip to main content
Log in

Differentiation of lens- and Iris-like tissue in explants of the anterior part of the frog neural plate

  • Published:
Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen Aims and scope Submit manuscript

Summary

The differentiation was studied of presumptive eye material developing in the absence of ectoderm. Explants were made of the anterior (forebrain- and eye-forming) part of the neural plate, without the lateral neural folds, of early to mid-neurulae ofRana temporaria andR. esculenta. The underlying endomesoderm as well as the outer layer of the neural plate were removed prior to explantation. Consequently the explants did not become surrounded by epidermis. The explants segregated into a mass of forebrain tissue and a single retina, which did not assume the typical cup shape. In between these two components an interzone developed, consisting of incompletely differentiated layers of iris tissue. In the interzone typical lentoids, as well as lentoids continuous with other tissue components, differentiated. The formation of lentoids in the absence of ectoderm is discussed in terms of the availability of a lens-inducing agent. It is assumed that in the interzone the lens-inducing agent acts on tissue components which are competent for lens formation. The formation of lens-like tissue may be regarded as analogous to lens regeneration in newts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman, A. L.: The determination of the eye in Anuran, Hyla regilla. J. exp. Zool.70, 205–239 (1935).

    Google Scholar 

  • Balinsky, B. I.: On the eye cup—lens correlation in some South African Amphibians. Experientia (Basel)7, 180–181 (1951).

    Google Scholar 

  • Balinsky, B. I.: On the factors controlling the size of lens rudiment in amphibians embryos. J. exp. Zool.135, 255–300 (1957).

    Google Scholar 

  • Berardino, M., Di: Frogs. In: Methods in developmental Biology (ed. by F. H. Wilt and N. K. Wessels), 53–74. New York: Crowell 1967.

    Google Scholar 

  • Boterenbrood, E. C.: On the pattern formation in the prosencephalon. An investigation on disaggregated and reaggregated presumptive prosencephalon material of neurula of Triturus alpestris. Thesis, Univ. of Utrecht (1962).

  • Boterenbrood, E. C.: Differentiation in small grafts of the median region of the presumptive prosencephalon. J. Embryol. exp. Morph.23, 751–759 (1970).

    Google Scholar 

  • Campbell, J. C.: Lens regeneration from iris, retina and cornea in lensectomized eyes of Xenopus laevis. Anat. Rec.145, 213–215 (1963).

    Google Scholar 

  • Campbell, J. C.: Cellular interactions in vertebrate lens regeneration. In: Intercellular interactions in differentiation and growth (ed. by Lopashovet al.), 65–77. Moscow: Nauka 1970.

    Google Scholar 

  • Campbell, J. C., Clayton, R., Truman, D.: Antigens of the lens of Xenopus laevis. Exp. Eye Res.7, 4–10 (1968).

    Google Scholar 

  • Chibon, P.: Analyse experimentale de la régionalisation et des capacités morphogénétiques de la crête neurale chez l'Amphibien Urodele Pleurodeles waltlii Michah. Mem. Soc. Zool. France36, 1–107 (1966).

    Google Scholar 

  • Eppig, J. J.: Melanogenesis in amphibians I.A study of the fine structure of the normal and phenylthiourea-treated pigmented epithelium in Rana pipiens tadpole eyes. Z. Zellforsch.103, 238–246 (1970a).

    Google Scholar 

  • Eppig, J. J.: Melanogenesis in amphibians II. Electron microscopie studies of the normal and PTU-treated pigmented epithelium of developing Notophtalmus viridiscens eyes. J. Embryol. exp. Morph.24, 447–454 (1970b).

    Google Scholar 

  • Freeman, G.: Lens regeneration from the cornea in Xenopus laevis. J. exp. Zool.154, 39–66 (1963).

    Google Scholar 

  • Goettert, L.: Differenzierungsleistungen von explantierten Urodelenektoderm (Amblystoma mexicanum Cope und Triturus alpestris Laur) nach verschieden langer Unterlagerungszeit. Wilhelm Roux' Arch. Entwickl.-Mech. Org.157, 75–100 (1966).

    Google Scholar 

  • Harrison, R. G.: Experiments on the lens in Amblystoma. Proc. Soc. exp. Biol. (N. Y.)17, 199–200 (1920).

    Google Scholar 

  • Hörstadius, S.: The Neural crest. Oxford: Pergamon Press 1950.

    Google Scholar 

  • Holtfreter, J.: Gewebeaffinität, ein Mittel der embryonalen Formbildung. Arch. exp. Zellforsch.23, 169–209 (1939).

    Google Scholar 

  • Holtfreter, J., Hamburger, V.: Embryogenesis: Progressive differentiation. Amphibians. In: Analysis of development, p. 230–296. Philadelphia-London: Saunders 1955.

    Google Scholar 

  • Hoperskaya, O. A.: Differentiation of eye area of the neural plate of early neurula of frog embryos without subsequent inductive interactions. C.R.Ac. Sci. USSR180, 1012–1015 (1968).

    Google Scholar 

  • Ichikawa, M.: Experiments on the amphibian mesectoderm, with special reference to the cartilage-formation. Mem. Coll. Sci. Kyoto Univ. B12, 311–351 (1937).

    Google Scholar 

  • Jääskeläinen, M., Saxén, L.: Transfilter lens induction in chick (abstract). Ophthalmic Research3, 19–20 (1972).

    Google Scholar 

  • Jacobson, A. G.: The role of neural and non-neural tissues in lens induction. J. exp. Zool.139, 527–557 (1958).

    Google Scholar 

  • Jacobson, A. G.: Inductive processes in embryonic development. Science152, 25–34 (1966).

    Google Scholar 

  • Jacobson, A. G.: Amphibian cell culture, organ culture and tissue dissociation. In: Methods in developmental biology, ed. by F. H. Wilt and N. K. Wessels, p. 531–542. New York: Crowell 1967.

    Google Scholar 

  • Kawakami, I.: Relation of inductive effect to embryonic field, with special reference to the developmental mechanism of cephalic sensory organs in amphibians. Annot. zool. jap.25, 97–104 (1952).

    Google Scholar 

  • Kawakami, I.: Contrast of cephalic sensory organ inductor and regional organizer in amphibian embryos. In: 2nd Conference on lens Differentiation, Morgantown (thesis) (1966).

  • Kocher-Becker, U., Tiedemann, H., Tiedemann, H.: Exovagination of newt endoderm: cell affinities altered by the mesodermal inducing factor. Science147, 167–169 (1965).

    Google Scholar 

  • Lopashov, G. V.: Formbildungsfelder des Mesoderms bei Amphibienkeimen. C.R.Ac. Sci. USSR30, 770–774 (1941).

    Google Scholar 

  • Lopashov, G. V.: Developmental mechanisms of vertebrate eye rudiments. Oxford: Pergamon Press 1963.

    Google Scholar 

  • Lopashov, G. V., Hoperskaya, O. A.: On the character of cell interactions during eye rudiment differentiation in amphibians. C.R. Ac. Sci. USSR175, 962–965 (1967).

    Google Scholar 

  • Lopashov, G. V., Hoperskaya, O. A.: Origin and modes of distribution of inducing agents in development. In: Intercellular interactions in differentiation and growth (ed. by G. V. Lopashovet al.), p. 52–64. Moscow: Nauka 1970.

    Google Scholar 

  • Lopashov, G. V., Sologub, A. A.: Stimulation of metaplasia and embryonic induction. In: Tissue metaplasia (ed. by M. S. Mitskevichet al.), p. 23–44. Moscow: Nauka 1970.

    Google Scholar 

  • Lopashov, G. V., Stroeva, O. G.: Eye development in the light of experimental investigations. Moscow: Ac. Sci. USSR Press 1963.

    Google Scholar 

  • Mangold, O.: Freie Linsen in augenlosen Köpfen und Isolaten von Triturus alpestris. Acta morph. Acad. Sci. hung.10, 153–176 (1961).

    Google Scholar 

  • Muthukkaruppan, V.: Inductive tissue interactions in the development of the mouse lens in vitro. J. exp. Zool.159, 269–288 (1965).

    Google Scholar 

  • Nieuwkoop, P. D., Oikawa, I., Boddingius, T.: The anterior transverse neural fold in amphibians. Arch. néerl. Zool.13, Suppl. 1, 167–184 (1958).

    Google Scholar 

  • Paul, J.: Cell and tissue culture. Edinburgh-London: Livingston 1965.

    Google Scholar 

  • Reyer, R. W.: Regeneration of the lens in the amphibian eye. Quart. Rev. Biol.29, 1–46 (1954).

    Google Scholar 

  • Reyer, R. W.: Regeneration in the amphibian eye. In: Regeneration, p. 211–265. New York: Ronald Press 1962.

    Google Scholar 

  • Rugh, R.: Experimental embryology. Minneapolis: Burgess 1962.

    Google Scholar 

  • Saint-Marie, A.: A paraffin embedding technique for studies employing immunofluorescence. J. Histochem. Cytochem.10, 250–257 (1962).

    Google Scholar 

  • Sato, T.: Vergleichende Studien über die Geschwindigkeit der Wolffschen Linsenregeneration bei Triton taeniatus und Diemyctylus pyrrogaster. Wilhelm Roux' Arch. Entwickl.- Mech. Org.140, 570–613 (1940).

    Google Scholar 

  • Sheina, A. P.: Comparative study of lens-forming properties of body epithelium at different stages on the development of Rana temporaria, Rana esculenta and Rana arvalis. C. R. Ac. Sci. USSR42, 72–74 (1940).

    Google Scholar 

  • Sheina, A. P.: Comparative study of lens-forming properties of body epithelium at different stages of development in Bombina bombina and Amblystoma mexicanum. C. R. Ac. Sci. USSR44, 232–236 (1944).

    Google Scholar 

  • Spemann, H.: Zur Entwicklung des Wirbeltierauges. Zool. Jb. Abt. allg. Zool. u. Physiol.32, 1–98 (1912).

    Google Scholar 

  • Stone, L. S.: An investigation recording all salamanders which can and can not regenerate a lens from the dorsal iris. J. exp. Zool.164, 87–104 (1967).

    Google Scholar 

  • Tahara, Y.: Formation of the independent lens in Japanese amphibians. Embryologia7, 127–149 (1962a).

    Google Scholar 

  • Tahara, Y.: Differentiation of the independent lens rudiment in Rhacophorus schlegelii arboreus Okada et Kawano. Embryologia (Nagoya)7, 150–168 (1962b).

    Google Scholar 

  • Takeuchi, S.: Changes of modes of lens-formation in the newt during development. Embryologia (Nagoya)8, 21–44 (1963).

    Google Scholar 

  • Tiedemann, H.: Quelques aspects de l'induction et la differentiation au début de l'embryogenése des amphibiens. In: Interactions Tissulaires au Cours de l'Organogénese (ed. par E. Wolff), p. 23–47. Paris: Dunod 1969.

    Google Scholar 

  • Weston, A. A.: Migration and differentiation of neural crest cells. Advanc. Morphogenes.8, 41–114 (1970).

    Google Scholar 

  • Woellwarth, V. C.: Die Induktionsstufen des Gehirns. Wilhelm Roux' Arch. Entwickl.- Mech. Org.145, 582–668 (1952).

    Google Scholar 

  • Woellwarth, V. C.: Über das Anlagenmuster und die Kinematik des Ectoderms, insbesondere der präsumptiven Epidermis, im Neurula- und Schwanzknospenstadium von Trituras alpestris. Wilhelm Roux' Arch. Entwickl.-Mech. Org.152, 602–631 (1960).

    Google Scholar 

  • Woellwarth, V. C.: Die Rolle des Neuralleistenmaterials und der Temperatur bei der Determination der Augenlinse. Embryologia (Nagoya)6, 219–242 (1961).

    Google Scholar 

  • Yamada, T.: Differentiation of lens cells. In: Exp. biol. med. vol. 1, p. 77–89. Basel-New York: S. Karger 1967.

    Google Scholar 

  • Yoshida, M., Ninomiya, N.: Electron microscopy of the retinal rods in frog larvae with special reference to the oil droplets. Annot. zool. jap.40, 91–97 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author wishes to express her sincere appreciation to Prof. G. V. Lopashov for his advice and encouragement throughout the course of this study, to Mrs. Nina A. Ivanova for expert technical assistance, and to Dr. J. Faber (Hubrecht Laboratory, Utrecht) for the correction of the English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoperskaya, O.A. Differentiation of lens- and Iris-like tissue in explants of the anterior part of the frog neural plate. W. Roux' Archiv f. Entwicklungsmechanik 171, 1–16 (1972). https://doi.org/10.1007/BF00584410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584410

Keywords

Navigation