Pflügers Archiv

, Volume 377, Issue 1, pp 75–80 | Cite as

Embryonic hemoglobins: dependency of functional characteristics on tetramer composition

  • Wolfgang Jelkmann
  • Christian Bauer
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology


  1. 1.

    Nucleated erythroblasts from embryonic rabbits contain two groups of tetrameric hemoglobins (Hbs): Hbs EI–III consist of embryonic α-type chains (Ξ-chains) and embryonic β-type chains (ε-chains) whilst Hbs LI–III are composed of adult α-chains and ε-chains. Structural analyses have indicated that the Ξ-chains are evolutionarily older than ε-chains. To obtain informations on possible differences in ligand binding properties associated with these embryonic chains, we have prepared Hbs EI–III and LI–III from the erythroblasts of 14-days-old embryonic rabbits and measured their oxygen affinity at various pH values and different concentrations of phosphate compounds. These data were compared with those obtained on the unfractionated embryonic hemolysate and adult rabbit hemoglobin (HbA).

  2. 2.

    We found that Hbs EI–III have a higher oxygen affinity than Hbs LI–III at all pH values investigated, the difference becoming larger at more acid pH. As a result, the Bohr effect is smaller in Hbs EI–III than in Hbs LI–III, Δ logP50/Δ pH amounting to −0.25 and −0.50, respectively. In the pH range between 6.8 and 7.8 the oxygen affinities of HbA and of Hbs LI–III are alike but lower in HbA at more acid pH. These results indicate that the presence of embryonic Ξ-chains in hemoglobin tetramers raise the oxygen affinity and lower the Bohr effect of the pigment, whereas the combination of adult α-chains with embryonic ε-chains lead to hemoglobin tetramers with a very similar oxygen affinity to HbA in the physiological pH range. The cooperativity of oxygen binding was smaller both in Hbs EI–III and LI–III compared to HbA.

  3. 3.

    The effect of added phosphates notably of 2,3-diphosphoglycerate (2,3-DPG) on the oxygen affinity of Hbs EI–III and LI–III was very similar, i.e. the rise inP50 produced by maximal concentrations of 2,3-DPG was not significantly different in the two types of embryonic hemoglobins. In HbA, the increase ofP50 produced by comparable concentrations of 2,3-DPG was only slightly higher than in the embryonic hemoglobins. This shows that the embryonic ε-chains are similarly effective in binding phosphate as the adult β-chains.


Key words

Embryonic hemoglobins Oxygen affinity Bohr effect Phosphate effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Assendelft, O. W., Zijlstra, W. G.: Extinction coefficents for use in equations for the spectrophotometric analysis of haemoglobin mixtures. Anal. Biochem.69, 43–48 (1975)Google Scholar
  2. 2.
    Bauer, C., Baumann, R., Engels, U., Pacyna, B.: The carbon dioxide affinity of various human hemoglobins. J. Biol. Chem.250, 2173–2176 (1975)Google Scholar
  3. 3.
    Bauer, C., Tamm, R., Petschow, D., Bartels, R., Bartels, H.: Oxygen affinity and allosteric effects of embryonic mouse haemoglobins. Nature257, 333–334 (1975)Google Scholar
  4. 4.
    Benesch, R. E., Benesch, R., Yung, S.: Equations for the spectrophotometric analysis of hemoglobin mixtures. Anal. Biochem.55, 245–248 (1973)Google Scholar
  5. 5.
    Capp, G. L., Rigas, D. A., Jones, R. T.: Evidence for a new haemoglobin chain (ζ-chain). Nature228, 278–280 (1970)Google Scholar
  6. 6.
    Desbois, A., Banerjee, R.: Effects of polyvalent anion binding to hemoglobin on oxygen and oxidation — reduction equilibria and their relevance to allosteric transitions. J. Mol. Biol.92, 479–493 (1975)Google Scholar
  7. 7.
    Goodman, M., Moore, G. W., Matsuda, G.: Darwinian evolution in the genealogy of haemoglobin. Nature253, 603–608 (1975)Google Scholar
  8. 8.
    Hecht, F., Jones, R. T., Koler, R. D.: Newborn infants with Hb Portland 1, an indicator of α-chain deficiency. Ann. Hum. Genet.31, 215–218 (1967)Google Scholar
  9. 9.
    Hill, A. V.: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curve. J. Physiol. (Lond.)40, IV-VII (1910)Google Scholar
  10. 10.
    Huehns, E. R., Farooqui, A. M.: Oxygen dissociation properties of human embryonic red cells. Nature254, 335–337 (1975)Google Scholar
  11. 11.
    Huehns, E. R., Dance, N., Beaven, G. H., Keil, J. V., Hecht, F., Motulsky, A. G.: Human embryonic haemoglobins. Nature201, 1095–1097 (1964)Google Scholar
  12. 12.
    Jelkmann, W., Bauer, C.: What is the best method to remove 2,3-diphosphoglycerate from hemoglobin? Anal. Biochem.75, 382–388 (1976)Google Scholar
  13. 13.
    Jelkmann, W., Bauer, C.: Oxygen affinity and phosphate compounds of red blood cells during intrauterine development of rabbits. Pflügers Arch.372, 149–156 (1977)Google Scholar
  14. 14.
    Kamuzora, H., Lehmann, H.: Human embryonic haemoglobins including a comparison by homology of the human ζ- and α-chains. Nature256, 511–513 (1975)Google Scholar
  15. 15.
    Kamuzora, H., Jones, R. T., Lehmann, H.: The ζ-chain an α-like chain of human embryonic haemoglobin. FEBS Lett.46, 195–199 (1974)Google Scholar
  16. 16.
    Kitchen, H., Brett, I.: Embryonic and fetal hemoglobins in animals. Ann. N.Y. Acad. Sci.241, 631–671 (1974)Google Scholar
  17. 17.
    Kleihauer, E., Stöffler, G.: Embryonic hemoglobins of different animal species. Mol. Gen. Genet.101, 59–69 (1968)Google Scholar
  18. 18.
    Melderis, H., Steinheider, G., Ostertag, W.: Evidence for a unique kind of α-type globin chain in early mammalian embryos. Nature250, 774–776 (1974)Google Scholar
  19. 19.
    Niesel, W., Thews, G.: Ein neues Verfahren zur schnellen und genauen Aufnahme der Sauerstoffbindungskurve des Blutes und konzentrierten Hämoproteidlösungen. Pflügers Arch.273, 380–395 (1961)Google Scholar
  20. 20.
    Rifkind, R. A., Cantor, L. N., Cooper, M., Levy, J., Maniatis, G. M., Bank, A., Marks, P. A.: Ontogeny, of erythropoiesis in the fetal mouse. Ann. N.Y. Acad. Sci.241, 113–118 (1974)Google Scholar
  21. 21.
    Sick, H., Gersonde, K.: Method for continuous registration of O2 binding curves of haemoproteins by means of a diffusion chamber. Anal. Biochem.32, 362–376 (1969)Google Scholar
  22. 22.
    Steinheider, G., Melderis, H., Ostertag, W.: Mammalian embryonic hemoglobins. In: Synthese, Struktur und Funktion des Hämoglobins (H. Martin, L. Novicki, eds.), pp. 225–235. München: Lehmann 1972Google Scholar
  23. 23.
    Steinheider, G., Melderis, H., Ostertag, W.: Embryonic ε-chains of mice and rabbits. Nature257, 714–716 (1975)Google Scholar
  24. 24.
    Szabo, A., Karplus, M.: Analysis of the interaction of organic phosphates with hemoglobin. Biochemistry15, 2869–2877 (1976)Google Scholar
  25. 25.
    Szelényi, J. G., Hollán, S. R.: Studies on the structure of human embryonic hemoglobin. Acta Biochim. Biophys. Acad. Sci. Hung.4, 47–55 (1955)Google Scholar
  26. 26.
    Todd, D., Lai, M. C. S., Beaven, G. H., Huehns, E. R.: The abnormal haemoglobins in homozygous α-Thalassaemia. Br. J. Haematol.19, 27–31 (1970)Google Scholar
  27. 27.
    Tuchinda, S., Nagai, K., Lehmann, H.: Oxygen dissociation curve of hemoglobin Portland. FEBS Lett.49, 390–391 (1975)Google Scholar
  28. 28.
    Weatherall, D. J., Clegg, J. B., Boon, W. H.: The haemoglobin constitution of infants with the haemoglobin Bart's hydrops foetalis syndrome. Br. J. Haematol.18, 357–367 (1970)Google Scholar
  29. 29.
    Zuckerkandl, E.: Hemoglobins, Haeckel's “Biogenetic law”, and molecular aspects of development. In: Structural Chemistry and Molecular Biology (A. Rich, N. Davidson, eds.), pp. 256–274. San Francisco-London: Freeman 1968Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Wolfgang Jelkmann
    • 1
  • Christian Bauer
    • 1
  1. 1.Physiologisches Institut der Universität RegensburgRegensburgFederal Republic of Germany

Personalised recommendations