Pflügers Archiv

, Volume 377, Issue 1, pp 57–63 | Cite as

Effect of divalent cations on acetylcholine release from cardiac parasympathetic nerve endings

  • H. G. Glitsch
  • L. Pott
Excitable Tissues and Central Nervous Physiology


The influence of several divalent cations on acetylcholine (ACh) release from vagus nerve terminals was studied in quiescent guinea-pig auricles. ACh release was induced by stimulus trains subthreshold for excitation of atrial cells. The ACh released evoked a hyperpolarization of the atrial cell membrane. Changes in ACh sensitivity of the atrial cell membrane were tested by application of ACh-containing solutions. ACh release increased with the external Ca concentration. External Sr maintained the ACh release in ‘Ca-free’ media. However, Sr ions were less effective than Ca ions. External Mg acted as a weak inhibitor of the stimulus evoked ACh release, whereas Co and Mn ions exerted a strong inhibition.

Key words

ACh release Divalent cations Guinea-pig atria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P. F.: Transport and metabolism of calcium ions in nerve. Prog. Biophys. Mol. Biol.24, 179–223 (1972)Google Scholar
  2. Baker, P. F., Glitsch, H. G.: Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations. Philos. Trans. R. Soc. Lond. [Biol.]270, 389–409 (1975)Google Scholar
  3. Balnave, R. J., Gage, P. W.: The inhibitory effect of manganese on transmitter release at the neuromuscular junction of the toad. Br. J. Pharmacol. Chemother.47, 339–352 (1973)Google Scholar
  4. Benoit, P. R., Mambrini, J.: Modification of transmitter release by ions which prolong the presynaptic action potentia. J. Physiol. (Lond.)210, 681–695 (1970)Google Scholar
  5. Del Castillo, J., Katz, B.: Production of membrane potential changes in the frog's heart by inhibitory nerve impulses Nature175, 1035 (1955)Google Scholar
  6. Dodge, F. A., Jr., Rahamimoff, R.: Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.)193, 419–432 (1967)Google Scholar
  7. Dodge, F. A., Jr., Miledi, R., Rahamimoff, R.: Strontium and quantal release of transmitter at the neuromuscular junction. J. Physiol. (Lond.)200, 267–283 (1969)Google Scholar
  8. Gaskell, W. H.: The electrical changes in the quiescent cardiac muscle which accompany stimulation of the vagus nerve. J. Physiol. (Lond.)7, 451–452 (1886)Google Scholar
  9. Glitsch, H. G., Pott, L.: Effects of acetylcholine and parasympathetic nerve stimulation on membrane potential in quiescent guinea-pig atria. J. Physiol. (Lond.)279, 655–668 (1978)Google Scholar
  10. Glitsch, H. G., Pusch, H., Venetz, K.: Effects of Na and K ions on the active Na transport in guinea-pig auricles. Pflügers Arch.365, 29–36 (1976)Google Scholar
  11. Hagan, N. H., Ormond, J. K.: Relation of calcium to the cardioinhibitory function of the vagus. Am. J. Physiol.30, 105–113 (1912)Google Scholar
  12. Harris, E. J., Hutter, O. F.: The action of acetylcholine on the movements of potassium ions in the sinus venosus of the frog. J. Physiol. (Lond.)133, 58–59P (1956)Google Scholar
  13. Hubbard, J. I., Jones, S. F., Landau, E. M.: On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses. J. Physiol. (Lond.)196, 75–86 (1968)Google Scholar
  14. Hutter, O. F., Trautwein, W.: Vagal and sympathetic effects on the pacemaker fibres in the sinus venosus of the heart. J. gen. Physiol.39, 715–733 (1956)Google Scholar
  15. Jenkinson, D. H.: The nature of the antagonism between Ca and Mg ions at the neuromuscular junction. J. Physiol. (Lond.)138, 438–444 (1957)Google Scholar
  16. Katz, B., Miledi, R.: The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.)195, 481–492 (1968)Google Scholar
  17. Katz, B., Miledi, R.: Tetrodotoxin-resistant electric activity in presynaptic nerve terminals. J. Physiol. (Lond.)203, 459–487 (1969)Google Scholar
  18. Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. I. Mitteilung. Pflügers Ärch.189, 239–242 (1921)Google Scholar
  19. Martin, A. R.: A further study of the statistical composition of the end-plate potential. J. Physiol. (Lond.)130, 114–122 (1955)Google Scholar
  20. Meiri, W., Rahamimoff, R.: Neuromuscular transmission: Inhibition by manganese ions. Science176, 308–309 (1972)Google Scholar
  21. Miledi, R.: Strontium as a substitute for calcium in the process of transmitter release at the neuromuscular junction. Nature212, 1233–1234 (1966)Google Scholar
  22. Rubin, R. P.: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev.22, 359–428 (1970)Google Scholar
  23. Smith, A. D.: Summing up: some implications of the neuron as a secreting cell. In: A discussion on subcellular and macromolecular aspects of synaptic transmission (Blaschko, H. K. F., Smith, A. D., eds.). Philos. Trans. R. Soc. Lond. [Biol.]261, 423–437 (1969)Google Scholar
  24. Toda, N., West, T. C.: Interaction between Na, Ca, Mg and vagal stimulation in the S-A node of the rabbit. Am. J. Physiol.212, 424–430 (1967)Google Scholar
  25. Trautwein, W., Dudel, J.: Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflügers Arch.266, 324–334 (1958)Google Scholar
  26. Vincenzi, F. F., West, T. C.: Modification by calcium of the release of autonomic mediators in the isolated sinoatrial node. J. Pharmacol. Exp. Ther.150, 349–360 (1965)Google Scholar
  27. Weakly, J. N.: The action of cobalt ions on neuromuscular transmission in the frog. J. Physiol. (Lond.)234, 597–612 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. G. Glitsch
    • 1
  • L. Pott
    • 1
  1. 1.Institut für ZellphysiologieRuhr Universität BochumBochumFederal Republic of Germany

Personalised recommendations