Advertisement

Pflügers Archiv

, Volume 401, Issue 4, pp 427–429 | Cite as

Bicarbonate movement across basolateral membrane vesicles from rat jejunum

  • A. Faelli
  • M. Tosco
  • M. N. Orsenigo
  • G. Esposito
  • V. Capraro
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands Letters and Notes
  • 19 Downloads

Abstract

The self-orienting Percoll-gradient centrifugation was used to separate basolateral membranes (BLMs) from rat jejunal enterocytes. Bicarbonate uptake into osmotically active BLM vesicles was studied by a rapid filtration technique. The time course of [14C]-labelled bicarbonate uptake was followed for 30 min at 18° C and at pH 8.2. Bicarbonate uptake was fast, not saturable and stimulated by countertransport. This work demonstrates that it is possible to determine bicarbonate flux across BLM vesicles at pH and temperature values close to usual experimental conditions. Together with simple diffusion, bicarbonate would cross the BLM of the enterocyte via a carrier-mediated diffusion process.

Key words

Rat jejunal enterocyte Basolateral membrane vesicles Bicarbonate transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  2. Buschmann RJ, Manke DJ (1981) Morphometric analysis of the membranes and organelles of small intestinal enterocytes. J Ultrastruct Res 76:1–14Google Scholar
  3. Faelli A, Esposito G, Tosco M, Burlini N (1980) Lactate and bicarbonate transport in rat and hamster jejuna incubated in vitro. Pflügers Arch 385:143–146Google Scholar
  4. Giebisch G, Green R (1981) Anion driven fluid movement across proximal tubular epithelium. In: Ussing HH, Birdslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Alfred Benzon Symposium, Copenhagen, p 376Google Scholar
  5. Greger R, Schlatter E (1983) Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflügers Arch 396:325–334Google Scholar
  6. Magid E, Turbeck BO (1968) The rate of the spontaneous hydration of the CO2 and the reciprocal reaction in the neutral aqueous solutions between O° and 38° C. Biochim Biophys Acta 165:515–524Google Scholar
  7. Mircheff AK, Van Os CH, Wright EM (1980) Pathways for alanine transport in intestinal basal lateral membrane vesicles. J Membrane Biol 52:83–92Google Scholar
  8. Persijn JP, Van der Slik W (1976) A new method for the determination of γ-glutamyltransferase in serum. J Clin Chem Clin Biochem 14:421–427Google Scholar
  9. Scalera V, Storelli C, Storelli-Joss C, Haase W, Murer H (1980) A simple and fast method for the isolation of basolateral plasma membranes from rat small intestinal epithelial cells. Biochem J 186: 177–181Google Scholar
  10. Schoner W, von Ilberg C, Kramer R, Seubert W (1967) On the mechanism of Na+ and K+-stimulated hydrolysis of adenosine triphosphate. I Purification and properties of a Na+ and K+-activated ATPase from ox brain. Europ J Biochem 1:334–343Google Scholar
  11. Smith L (1955) Spectrophotometric assay of cytochrome c oxidase. In: Glik D (ed) Methods of Biochemical Analysis. Vol II. Interscience Publ Inc, New York, p 427Google Scholar
  12. Wallach DFH, Kamat VB (1966) Preparation of plasma mambrane fragments from mouse ascites tumor cells. In: Neufeld F, Ginsburg V (eds) Methods in Enzymology. Vol VIII. Academic Press, New York London, p 164Google Scholar
  13. Walter K, Schütt C (1974) Acid and alkaline phosphatase in serum. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Vol II. Verlag Chemie, Weinheim, p 856Google Scholar
  14. Wright EM, Van Os CH, Mircheff AK (1980) Sugar uptake by intestinal basolateral membrane vesicles. Biochim Biophys Acta 597:112–124Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. Faelli
    • 1
  • M. Tosco
    • 1
  • M. N. Orsenigo
    • 1
  • G. Esposito
    • 2
  • V. Capraro
    • 1
  1. 1.Dipartimento di Fisiologia e Biochimica GeneraliUniversità di MilanoMilanoItaly
  2. 2.Istituto di Fisiologia Generale e Chimica Biologica, Facoltà di FarmaciaUniversità di MilanoMilanoItaly

Personalised recommendations