Advertisement

Pflügers Archiv

, Volume 360, Issue 1, pp 91–94 | Cite as

Deviating flux rations for Na+ in ouabain-treated frog skin

  • P. P. Idzerda
  • J. F. G. Slegers
Letters and Notes

Summary

Unidirectional Na+ fluxes across ouabain-treated frog skins were measured at different applied voltages. The calculated influx/efflux ratios, appear to deviate markedly from Ussing's flux-ratio equation. This means that interactions of Na+ ions with some component in the system occur. Possible mechanisms, responsible for this phenomenon, are indicated.

Key words

Unidirectional Na+ Fluxes Ouabain-Treated Frog Skin Flux-Ratio Equation Interactions Exchange Diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, P. H., Hope, A. B.: Electro-osmosis in membranes: effects of unstired layers and transport numbers. I. Theory. Biophys. J.9, 700–728 (1969)Google Scholar
  2. Brinley, F. J., Mullins L. J.: Sodium fluxes in internally dialyzed squid axons. J. gen. Physiol.52, 181–211 (1968)Google Scholar
  3. Chen, J. S., Walser, M.: Passive ion fluxes across toad bladder. J. Membrane Biol.18, 365–378 (1974)Google Scholar
  4. Cooperstein, I. L., Hogben C. A. M.: Ionic transfer across isolated frog large intestine. J. gen. Physiol.42, 461–473 (1959)Google Scholar
  5. De Sousa, R. C., Li, J. H., Essig, A.: Flux ratios and isotope interaction in an ion exchange membrane. Nature (Lond.)231, 44–45 (1971)Google Scholar
  6. Hope, A. B.: Ion transport and membranes. London: Butterworth 1971Google Scholar
  7. Kedem, O., Essig, A.: Isotope flows and flux ratios in biological membranes. J. gen. Physiol.48, 1047–1070 (1965)Google Scholar
  8. Levi, H., Ussing, H. H.: The exchange of sodium and chloride ions across the fibre membrane of the isolated frog sartorius. Acta physiol. scand.16, 232–249 (1948)Google Scholar
  9. Li, J. H., De Sousa, R. C., Essig, A.: Kinetics of tracer flows and isotope interaction in an ion exchange membrane. J. Membrane Biol.19, 93–104 (1974)Google Scholar
  10. Lubowitz, H., Whittam, R.: Ion movements in human red cells independent of the sodium pump. J. Physiol. (Lond.)202, 111–131 (1969)Google Scholar
  11. Mandel, L. J., Curran, P. F.: Response of the frog skin to steady-state voltageclamping. I. The shunt pathway. J. gen Physiol.59, 503–518 (1972a).Google Scholar
  12. Mandel, L. J., Curran, P. F.: Chloride flux via a shunt pathway in frog skin: apparent exchange diffusion. Biochim. biophys. Acta (Amst.)282, 258–264 (1972b)Google Scholar
  13. Meares, P.: The fluxes of sodium and chloride ions across a cation exchange resin membrane. Part 3. The application of irreversible thermodynamics. Trans. Faraday Soc.55, 1970–1974 (1959)Google Scholar
  14. Motais, R.: Sodium movements in high-sodium beef red cells: properties of a ouabain-insensitive exchange diffusion. J. Physiol. (Lond.)233, 395–422 (1973)Google Scholar
  15. Robinson, R. A., Stokes, R. H.: Electrolyte solutions. London: Butterworth 1970Google Scholar
  16. Simons, R. G.: A thermodynamic analysis of particle flow through biological membranes. Biochim. biophys. Acta (Amst.)173, 34–50 (1969)Google Scholar
  17. Skou, J. C.: The relationship of the (Na++K+)-activated enzyme system to transport of sodium and potassium across the cell membrane. Bioenergetics4, 203–232 (1972)Google Scholar
  18. Spiegler, K. S.: Transport processes in ionic membranes. Trans. Faraday Soc.54, 1408–1428 (1958)Google Scholar
  19. Ussing, H. H.: The distinction by means of tracers between active transport and diffusion. Acta physiol scand.19, 43–56 (1949)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • P. P. Idzerda
    • 1
  • J. F. G. Slegers
    • 1
  1. 1.Department of Physiology, Section of Cell PhysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations