Pflügers Archiv

, Volume 360, Issue 1, pp 81–89 | Cite as

Effects of certain diuretics on the electrophysiological characteristics of the nephron in the rat kidney

  • V. A. Kantariya
  • A. A. Lebedev


Electrophysiological micropuncture techniques were used to study the effect of certain diuretics on transtubular transport of electrolytes in the rat kidney. The mercurial diuretic novurite caused a reduction of active sodium transport in the proximal tubule, measured by short-circuit current and increased permeability of the tubular wall to ions which led to a considerable drop in transtubular potential and transepithelial resistance. Ethacrynic acid decreased the shortcircuit current in the proximal tubule, without changing the permeability characteristics of the nephron. Xanthine diuretic euphylline did not reduced the short-circuit current in the proximal segment of the nephron; however, it increased the transepithelial potential of the renal tubule. In the distal tubule, euphylline and ethacrynic acid increased the difference in transtubular potential, whereas novurite distal tubule as a result of euphylline and ethacrynic acid action may be responsible for increasing potassium excretion. A decrease of the transtubular potential in the distal tubule under the action of novurite may serve to explain a lack of significant potassium excretion under mercurial diuretic action. The reduction of tubular reabsorption as a result of diuretic action is due to drug effect on different levels of the transtubular-ion transport system.

Key words

Micropuncture Active Transport Sodium Transport Potassium Transport Diuretics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boulpaep, E. L.: Permeability changes of the proximal tubule of Necturus during saline loading. Amer. J. Physiol.223, 517–531 (1972)Google Scholar
  2. 2.
    Bowman, F. J., Landon, E. J.: Organic mercurials and net movement of potassium in rat kidney slices. Amer. J. Physiol.213, 1209–1217 (1967)Google Scholar
  3. 3.
    Deetjen, P.: A study of the effectiveness and localisation of the action of furosemide. Cardiology9, 12–17 (1969)Google Scholar
  4. 4.
    Duarte, C. G., Chonuti F., Giebisch, G.: Effect of amiloride, ouabain and furosemide on distal tubular function in the rat. Amer. J. Physiol.221, 632–639 (1971)Google Scholar
  5. 5.
    Giebisch G.: Measurements of electrical potentials and Ion fluxes on single renal tubules. Circulation221, 879–891 (1960)Google Scholar
  6. 6.
    Heller, J.: The influence of Lissamine green on tubular reabsorption of electrolytes and water in rats. Pflügers Arch.323, 27–33 (1971)Google Scholar
  7. 7.
    Karger W., Eigler, F. W., Hampel, A.: Über eine Meßordnung zur Bestimmung elektrischer Größen an biologischen Membranen mit aktiven Ionentransport. Pflügers Arch. ges. Physiol.272, 187–190 (1960)Google Scholar
  8. 8.
    Klimmenkoff, A. P.: The effect of diuretic on sodium transport across the cellular membranes of the frog urinary bladder. In: The mechanism of diuretic action, Symposium, pp. 43–44. Kuybishev, 1970Google Scholar
  9. 9.
    Landon, E. J., Forte, L. R.: Cellular mechanism in renal pharmacology. Ann. Rev. Pharmacol.11, 171–188 (1971)Google Scholar
  10. 10.
    Lebedev, A. A.: The mechanism of action of mercuric diuretics on the sodium tubular transport. Cardiology11, 89–94 (1971)Google Scholar
  11. 11.
    Macknight, A. D.: The effect of ethacrynic acid on the electrolyte and water contents of rat renal cortical slices. biochim. biophys. Acta (Amst.)173, 223–233 (1969)Google Scholar
  12. 12.
    Salaco, L. A., Smith, A. J.: Effects of amiloride on active sodium transport by the isolated frog skin: evidence concerning site action. Brit. J. Pharmacol.38, 702–718 (1970)Google Scholar
  13. 13.
    Shelepov, V. A.: The mechanism of diuretic action. In: The kidney and electrolytes. Proc. of Kuybishev Medical Institute, Vol.43, pp. 100–107, Kuybishev 1967Google Scholar
  14. 14.
    Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol.277, 23–35 (1963)Google Scholar
  15. 15.
    Tasaki, K., Tsukahara, Y., Ito, I.: A simple, direct and rapid method for filling microelectrodes. Physiol. Behav.3, 1009–1010 (1968)Google Scholar
  16. 16.
    Volynsky, B. G., Freidman, S. L.: On the mechanism of purins diuretic action. In: The mechanism of diuretic action, Symposium, pp. 23–24. Kuybishev 1970Google Scholar
  17. 17.
    White, H. Z., Role, D., Bisno, A. L.: Water and sodium exchange in renal tubule fluid. Amer. J. Physiol.200, 595–600 (1961)Google Scholar
  18. 18.
    Wright, F. S.: Increasing magnitude of electrical potential along the renal distal tubule. Amer. J. Physiol.220, 624–638 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • V. A. Kantariya
    • 1
  • A. A. Lebedev
    • 1
  1. 1.Chair of PharmacologyThe Ulyanov Memorial Kuibyshev Medical InstituteKuibyshevUSSR

Personalised recommendations