Pflügers Archiv

, Volume 360, Issue 1, pp 63–79 | Cite as

The genesis of the pulse contours of the distal leg arteries in man

  • R. Busse
  • E. Wetterer
  • R. D. Bauer
  • Th. Pasch
  • Y. Summa


In order to clarify the genesis of the human pressure and flow pulse contours of the distal leg arteries, in particular the posterior tibial artery, pulse recordings were performed with transcutaneous techniques under normal conditions and in the state of strong vasodilatation (reactive hyperaemia) in the distal parts of the lower legs. From the experimental results it is concluded that the contour of the incident pressure wave arriving in the leg arteries is very similar to the pressure pulse contour of the abdominal aorta, while the resulting contour in the leg arteries is determined by this incident wave and superimposed reflected waves. The latter arise from positive reflection in the periphery of the lower legs. They travel in retrograde direction, are reflected negatively in proximal regions, particularly in the abdomimal aorta, and appear again, with opposite sign, in the leg arteries. In addition, retrograde waves reflected positively at the aortic valve and then traveling in antegrade direction also influence the pulse contours. By considering this wave travel, the genesis of the characteristic contours of the pressure and flow pulses of the lower leg arteries is explained in a satisfactory way. This is demonstrated by a simplified graphical pulse construction as well as by the calculation of pulse contours on the basis of a theoretical tube model of the arterial system with the aid of a digital computer. The results of these calculations are discussed with respect to the findings of previous investigators who used analog and digital models of the arterial system.

Key words

Arterial Flow Pulses Arterial Pressure Pulses Leg Arteries Models of the Arterial System Reflection of Pulse Waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaslid, R., Brubakk, A. O.: Dynamische Druck-Strömungs-Verhältnisse in der menschlichen Aorta. Verh. dtsch. Ges. Kreisl.-Forsch.40, 154–158 (1974)Google Scholar
  2. Alexander, R. S.: Factors determining the contour of pressure pulses recorded from the aorta. Fed. Proc.11, 738–749 (1952)Google Scholar
  3. Alexander, R. S.: The genesis of the aortic standing wave. Circulat. Res.1, 145–151 (1953)Google Scholar
  4. Bauer, R. D., Pasch, Th.: Verfahren, zur Verbesserung der Registriertreue von transcutan nach dem Ultraschall-Doppler-Prinzip gewonnenen Blutströmungs-pulsen. Klin. Wschr.49, 1239–1240 (1971)Google Scholar
  5. Bauer, R. D., Pasch, Th., Sperling, W.: Studies on the accuracy of directional Doppler flowmetry with regard to steady and pulsatile flow. In: Ultrasonics in medicine, pp. 290–294, ed. by M. de Vlieger. Amsterdam: Excerpta Medica 1974Google Scholar
  6. Bauer, R. D., Pasch, Th., Wetterer, E.: Beitrag zur Form des menschlichen Femoralispulses. Pflügers Arch.312, R 43–44 (1969)Google Scholar
  7. Bauer, R. D., Pasch, Th., Wetterer, E.: Neuere Untersuchungen zur Entstehung der Pulsformen in großen Arterien des Menschen. Verh. dtsch. Ges. Kreisl.-Forsch.36, 330–336 (1970)Google Scholar
  8. Bauer, R. D., Pasch, Th., Wetterer, E.: Theoretical studies on the human arterial pressure and flow pulse by means of a non-uniform tube model. J. biomech.6, 289–298 (1973)Google Scholar
  9. Busse, R., Bauer, R. D., Körner, H., Pasch, Th., Sperling, W., Wetterer, E.: Der Einfluß der reaktiven Hyperämie auf die Form der arteriellen Druck- und Strompulse der unteren, Extremitäten des Menschen. Verh. dtsch. Ges. Kreisl.-Forsch.39, 228–233 (1973)Google Scholar
  10. Dupont, W.: Untersuchungen über die Bedeutung der Koordination von Herzrhythmus und arterieller Grundschwingung an gesunden und jugendlichen Hypertonikern. Med. Dissertation, Marburg 1969Google Scholar
  11. Frank, O.: Schätzung des Schlagvolumens des menschlichen Herzens auf Grund der Wellen- und Windkesseltheorie Z. Biol.90, 405–409 (1930)Google Scholar
  12. Gadermann, E., Jungmann, H.: Klinische Arterienpulsschreibung. München: Barth 1964Google Scholar
  13. Hamilton, W. F., Dow, Ph.: An experimental study of the standing waves in the pulse propagated through the aorta. Amer. J. Physiol.125, 48–59 (1939)Google Scholar
  14. Hertlein, E., Wetterer, E.: Neue Untersuchungen über die Entstehungsbedingungen der arteriellen Grundschwingung. Pflügers Arch.312, R 43 (1969)Google Scholar
  15. Hickl, E.-J.: Weitere Untersuchungen über die Länge der stehenden Welle im arteriellen Hauptrohr des Menschen. Z. Kreisl.-Forsch.49, 401–412 (1960)Google Scholar
  16. Kapal, E., Martini, F., Wetterer, E.: Untersuchung über die Länge der stehenden Welle im arteriellen, System des Menschen. Z. Biol.104, 256–284 (1951)Google Scholar
  17. Kenner, Th.: The central arterial pulses. Experiments on a hybrid model of the heart and the arterial system. Pflügers Arch.353, 67–81 (1975)Google Scholar
  18. Kenner, Th., Wetterer, E.: Experimentelle Untersuchungen über die Pulsformen und Eigenschwingungen zweiteiliger Schlauchmodelle. Pflügers Arch. ges. Physiol.275 594–613 (1962)Google Scholar
  19. Kenner, Th., Wetterer, E.: Experimentelle Untersuchungen an einem Schlauchmodell, dessen Wellenwiderstand peripherwärts kontinuierlich zunimmt. Pflügers Arch. ges. Physiol.295, 99–118 (1967)Google Scholar
  20. Kroeker, J., Wood, E. H.: Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, excercise and tilted position in man. Circulat. Res.3, 623–631 (1955)Google Scholar
  21. McDonald, D. A.: Blood flow in arteries. 2nd ed. London: Arnold 1974Google Scholar
  22. McDonald, D. A., Taylor, M. G.: The hydrodynamics of the arterial circulation. Progr. Biophys.9, 105–173 (1959)Google Scholar
  23. Mills, C. J., Gabe, I. T., Gault, J. H., Mason, D. T., Ross, J., Jr., Braunwald, E., Shillingford, J. P.: Pressure-flow relationships and vascular impedance in man. Cardiovasc. Res.4, 405–417 (1970)Google Scholar
  24. Noordergraaf, A: Development of an analog computer for the human arterial system. In: Circulatory analog computers., ed. by A. Noordergraaf, G. N. Jager and N. Westerhof., pp. 29–42. Amsterdam: North-Holland Publ. Comp. 1963Google Scholar
  25. Noordergraaf, A.: Hemodynamics. In: Biological engineering, ed. by H. P. Schwan, pp. 391–545. New York: McGraw-Hill 1969Google Scholar
  26. O'Rourke, M. F.: The arterial pulse in health and disease. Amer. Heart J.5, 687–702 (1971)Google Scholar
  27. Pasch, Th., Bauer, R. D., Busse, R.: Frequenzspektren direkt und unblutig registrierter Arterienpulse. Biomed. Techn. (in press, 1975)Google Scholar
  28. Pater, L. de, van den Berg, Jw.: An electrical analogue of the human circulatory system. Acta physiol. pharmacol. neerl.11, 511–512 (1962)Google Scholar
  29. Peterson, L. H., Gerst, P. H.: Significance of reflected waves within the arterial system. Fed. Proc.51, 144–145 (1956)Google Scholar
  30. Raines, J. K., Jaffrin, M. Y., Shapiro, A. H.: A computer simulation of arterial dynamics in the human leg. J. Biomech.7, 77–91 (1974)Google Scholar
  31. Remington, J. W.: Volume quantitation of the aortic pressure pulse. Fed. Proc.11, 750–761 (1952)Google Scholar
  32. Remington, J. W., O'Brian, L. J.: Construction of aortic flow pulse from pressure pulse. Amer. J. Physiol.218, 437–447 (1970)Google Scholar
  33. Röckemann, W.: Der Einfluß der Gefäßdehnbarkeit auf den Puls in den kleinen Gefäßen und den Widerstand der Peripherie. Habil.-Schrift, Frankfurt am Main 1965Google Scholar
  34. Röckemann, W., Conrad, G., Luther, H.: Elastic and plastic properties, of small vessels and the resulting input impedance. In: 6th Europ. Conf. Microcirculation, Aalborg 1970, ed. by J. Ditzel and D. H. Lewis, pp. 259–262. Basel: Karger 1971Google Scholar
  35. Schaaf, B. W., Abbrecht, P. H.: Digital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model. J. Biomech.5, 345–364 (1972)Google Scholar
  36. Snyder, M. F., Rideout, V. C., Hillestad, R. J.: Computer modeling of the human systemic arterial tree. J. Biomech.1, 341–353 (1968)Google Scholar
  37. Taylor, M. G.: Wave travel in a non-uniform transmission line in relation to pulses in arteries. Phys. in Med. Biol.10, 539–550 (1965)Google Scholar
  38. Taylor, M. G.: Wave transmission through an assembly of randomly branching elastic tubes. Biophys. J.6, 697–716 (1966)Google Scholar
  39. Wemple, R. R., Mockros, L. F.: Pressure and flow in the systemic arterial system. J. Biomech.5, 629–641 (1972)Google Scholar
  40. Westerhof, N., Bosman, F., de Vries, C. J., Noordergraaf, A.: Analog studies of the human systemic arterial tree. J. Biomech.2, 121–143 (1969)Google Scholar
  41. Wetterer, E.: Altere und neuere Befunde über die dikrote Schwingung des Arterienpulses. In: Arthur Weber zum 90. Geburtstag. Vorträge von Trägern des Arthur-Weber-Preises, gehalten am 3. August 1969 in Bad Nauheim. Hrsg. F. Bücher S 69–78. Mannheim: Boehringer 1970Google Scholar
  42. Wetterer, E.: Eine neue manometrische Sonde mit elektrischer Transmission. Z. Biol.101, 332–349 (1943)Google Scholar
  43. Wetterer, E., Kenner., Th.: Grundlagen der Dynamik des Arterienpulses. Berlin-Heidelberg-New York: Springer 1968Google Scholar
  44. Wezler, K., Böger, A.: Die Dynamik des arteriellen Systems. Ergebn. Physiol.41, 291–606 (1939)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • R. Busse
    • 1
  • E. Wetterer
    • 1
  • R. D. Bauer
    • 1
  • Th. Pasch
    • 1
  • Y. Summa
    • 1
  1. 1.Institut für Physiologie und Kardiologie der Universität Erlangen-NürnbergGermany

Personalised recommendations