Pflügers Archiv

, Volume 360, Issue 1, pp 25–44 | Cite as

The hydraulic conductivity of the rat proximal tubular wall determined with colloidal solutions

  • A. E. G. Persson
  • J. Schnermann
  • B. Ågerup
  • N. -E. Eriksson


The hydraulic conductivity of the rat proximal tubular wall was determined using colloidal solutions perfused in short (50–200 μm) (SMP) or long (90–2000 μm) (LMP) proximal tubular segments. In SMP human serum albumin (HSA) or polyvinylpyrrolidone (PVP) was added to raffinose solutions. AL p of 0.019 nl·min−1·mm−1·mm Hg−1 was found when high colloid concentrations were used while values of 0.055–0.092 were found when low colloid concentrations were used. In other experiments, theL p was determined by perfusing short tubular segments with pure raffinose solutions. A value of 0.015 nl·min−1·mm−1·mm Hg−1 was found. This is twice the value found when raffinose solutions were perfused through long tubular segments and it is concluded that the short microperfusion technique overestimatesL p with a factor of two.

When microperfusions of long tubular segments were conducted, PVP was added to an equilibrium solution consisting of NaCl (110 mM) and raffinose (80 mM).L p was found to be 0.018–0.021 when high colloid concentrations were used, while a value of 0.029 was found when a low colloid concentration was used.

As found in both SMP and LMP a decrease inL p 's with increasing colloid concentrations indicates that a significant influence of radial concentration differences is highly probable. It is therefore suggested that the highestL p derived when using the lowest colloid concentrations represents the best estimate. With thisL p value (0.03–0.05 nl·min−1·mm−1·mm Hg−1) and the existing transtubular hydrostatic and oncotic pressure difference it can be calculated that these passive forces might constitute the driving force for 1/3 of the fluid reabsorbed in the proximal tubule.

Key words

Proximal Tubule Microperfusion Technique Colloidal Solutions Hydraulic Conductance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ågerup, B.: Influence of peritubular hydrostatic and oncotic pressures on fluid reabsorption in proximal tubules of the rat kidney. Acta physiol. scand.93, 184–194 (1975)Google Scholar
  2. 2.
    Benzel, C. J., Davies, M., Scott, W. W., Zatzman, M., Solomon, A. K.: Osmotic volume flow in the proximal tubule of Necturus' kidney. J. gen. Physiol.51, 517–533 (1968)Google Scholar
  3. 3.
    Brenner, B. M., Falchuk, K. H., Keimowitz, R. I., Berliner, R. W.: The relationship between capillary protein concentration and fluid reabsorption by the renal proximal tubule. J. clin. Invest.48, 1519–1531 (1969)Google Scholar
  4. 4.
    Coulter, N. A.: Filtration coefficients of the capillaries of the brain. Amer. J. Physiol.195, 459–464 (1958)Google Scholar
  5. 5.
    Di Bona, G. F.: Effect of magnesium on water permeability of the rat nephron. Amer. J. Physiol.223, 1324–1326 (1972)Google Scholar
  6. 6.
    Falchuk, K. H., Berliner, R. W.: Hydrostatic pressures in peritubular capillaries and tubules in the rat kidney. Amer. J. Physiol.220, 1422–1426 (1971)Google Scholar
  7. 7.
    Fenstermacher, J. D., Johnson, J. A.: Filtration and reflection coefficients of the rabbit blood-brain barrier. Amer. J. Physiol.211, 341–346 (1966)Google Scholar
  8. 8.
    Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.278, 336–356 (1963)Google Scholar
  9. 9.
    Green, R., Windhager, E. E., Giebisch, G.: Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Amer. J. Physiol.226, 265–276 (1974)Google Scholar
  10. 10.
    Györy, A. Z.: Reexamination of the split-oil droplet method as applied to kidney tubules. Pflügers Arch.324, 328–343 (1971)Google Scholar
  11. 11.
    Hill, A. E.: Osmotic flow and solute reflection zones. J. theor. Biol.36, 255–270 (1972)Google Scholar
  12. 12.
    Källskog, Ö., Wolgast, M.: Driving forces over the peritubular capillary membrane in the rat kidney during antidiuresis and saline expansion. Acta physiol. scand.89, 116–125 (1973)Google Scholar
  13. 13.
    Kashgarian, M., Stöckle, H., Gottshalk, C. W., Ullrich, K. J.: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water-diuresis (Diabetes Insipidus). Pflügers Arch. ges. Physiol.277, 80–106 (1963)Google Scholar
  14. 14.
    Kunz, K. S.: Numerical analysis. New York: McGraw Hill Book Co. Inc. 1957Google Scholar
  15. 15.
    Landis, E. M., Pappenheimer, J. R.: Echange of substance through capillary walls. In Handbook of Physiology, Circulation, Washington, Am. Physiol. Soc., Vol. II, p. 974 (1963)Google Scholar
  16. 16.
    Landwehr, D., Schnermann, J., Klose, R. M., Giebisch, G.: Effect of reduction in the filtration rate on tubular sodium and water reabsorption. Amer. J. Physiol.215, 687–695 (1968)Google Scholar
  17. 17.
    Lassiter, W. E., Frick, A., Rumrich, G., Ullrich, K. J.: Influence of ionic calcium on the water permeability of proximal and distal tubules in the rat kidney. Pflügers Arch. ges. Physiol.285, 90–95 (1965)Google Scholar
  18. 18.
    Lewy, J. E., Windhager, E. E.: Peritubular control of proximal tubular fluid absorption in the rat kidney. Amer. J. Physiol.214, 943–954 (1968)Google Scholar
  19. 19.
    Lowitz, H. D., Stumpe, K. O., Ochwald, B.: Natrium und Wasserresorbtion in den verschiedenen Abschnitten des Nephrons beim experimentellen renalen Hochdruck der Ratte. Pflügers Arch.304, 322–335 (1968)Google Scholar
  20. 20.
    Moody, F. G., Durbin, R. P.: Water flow induced by osmotic and hydrostatic pressure in the stomach. Amer. J. Physiol.217, 255–261 (1969)Google Scholar
  21. 21.
    Morel, F., Muráyama, Y.: Simultaneous measurement of unidirectional and net sodium fluxes in microperfused rat proximal tubules. Pflügers Arch.320, 1–23 (1970)Google Scholar
  22. 22.
    Nakajima, K., Clapp, J. R., Robinson, R. R.: Limitations of the shrinking-drop micropuncture technique. Amer. J. Physiol.219, 345–357 (1970)Google Scholar
  23. 23.
    Öberg, Å., Ulfendahl, H. R., Wallin, G.: An integrating flame photometer for simultaneous microanalysis of sodium and potassium in biological fluids. Analyt. Biochem.18, 543–558 (1967)Google Scholar
  24. 24.
    Pedersen, J. C., Maunsbach, A. B.: Ultrastructural characteristics of peritubular capillaries and interstitium in rat renal cortex. J. Ultrastruct. Res.42, 401 (1973)Google Scholar
  25. 25.
    Persson, A. E. G., Ågerup, B., Schnermann, J.: The effect of luminal application of colloids on rat proximal tubular net fluid flux. Kidney Int.2, 203–213 (1972)Google Scholar
  26. 26.
    Persson, E., Ulfendahl, H. R.: Water permeability in rat proximal tubules. Acta physiol. scand.78, 353–363 (1970)Google Scholar
  27. 27.
    Radtke, H. W., Rumrich, G., Kloss, S., Ullrich, K. J.: Influence of luminal diameter and flow velocity on the isotonic fluid absorption and36Cl permeability of the proximal convoluted tubule of the rat kidney. Pflügers Arch.324, 288–296 (1971)Google Scholar
  28. 28.
    Rector, F. C., Brunner, F. P., Seldin, P. W.: Mechanism of glomerulo-tubular balance. J. clin. Invest.45, 590–611 (1966)Google Scholar
  29. 29.
    Scatchard, G., Batchelder, A. C., Brown, A.: Preparation and properties of serum and plasma proteins. VI. Osmotic equilibria in solutions of serum albumin and sodium chloride. Amer. chem. Soc.68, 2 (1946)Google Scholar
  30. 30.
    Schnermann, J., Persson, A. E. G., Ågerup, B.: Correlation between luminal hydrostatic pressure and proximal tubular fluid reabsorption in the rat kidney. Pflügers Arch. ges. Physiol.350, 145–165 (1974)Google Scholar
  31. 31.
    Spitzer, A., Windhager, E. E.: Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption. Amer. J. Physiol.218, 1188–1193 (1970)Google Scholar
  32. 32.
    Stolte, H., Brecht, J. P., Wiederholt, M., Hierholtzer, K. J.: Einfluß von Adrenalectomie und Glucocorticoiden auf die Wasserpermeabilität corticaler Nephronabschnitte der Rattenniere. Pflügers Arch. ges. Physiol.299, 99–127 (1968)Google Scholar
  33. 33.
    Ullrich, K. J.: Renal transport of sodium. Proc. 3rd Int. Congr. Nephrol. Washington 1966, vol. 1, pp. 48–61. Basel-New York: Karger, 1967Google Scholar
  34. 34.
    Ullrich, K. J., Rumrich, G., Fuchs, G.: Wasserpermeabilität und transtubulärer Wasserfluß corticaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.280, 99–119 (1964)Google Scholar
  35. 35.
    Vargas, F. F.: Filtration coefficient of the axon membrane as measured with hydrostatic and oncotic methods. J. gen. Physiol.51, 13–27 (1968)Google Scholar
  36. 36.
    Vink, H.: Precision measurements of osmotic pressure in concentrated polymer solutions. Europ. Polymer J.7, 1411–1419 (1971)Google Scholar
  37. 37.
    Wolgast, M., Persson, E., Schnermann, J., Ulfendahl, H., Wunderlich, P.: Colloid osmotic pressure of the subcapsular interstitial fluid of rat kidney during hydropenia and volume expansion. Pflügers Arch.340, 123–131 (1971)Google Scholar
  38. 38.
    Wright, F. S., Giebisch, G.: Glomerular filtration in single nephrons. Kidney Int.1, 201–209 (1972)Google Scholar
  39. 39.
    Wunderlich, P., Persson, E., Schnermann, J., Ulfendahl, H., Wolgast, M.: Hydrostatic pressure in the subcapsular interstitial space of rat and dog kidney. Pflügers Arch.328, 307–319 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • A. E. G. Persson
    • 1
    • 2
  • J. Schnermann
    • 1
    • 2
  • B. Ågerup
    • 1
    • 2
  • N. -E. Eriksson
    • 1
    • 2
  1. 1.Department of Physiologie and Medical Biophysics, Biomedical CenterUniversity of UppsalaSweden
  2. 2.Physiologisches InstitutUniversität MünchenGermany

Personalised recommendations