Advertisement

Pflügers Archiv

, Volume 377, Issue 3, pp 217–224 | Cite as

Transport and accumulation of α-aminoisobutyric acid (A.I.B.) in the guinea pig placenta

  • J. P. van Dijk
  • B. K. van Kreel
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands

Abstract

Active transport of A.I.B. from mother to fetus was studied. This was done in the intact animal and using the isolated placenta, artificially perfused at both sides. It was shown that A.I.B. is actively accumulated in the placental cells. An estimate of the kinetic constants is given. It is shown that this accumulation takes place predominantly from the maternal side of the placenta.

A.I.B. that has been accumulated is cleared to the maternal and fetal circulation in equal amounts. So the netto active transport from mother to fetus is brought about by an unequal distribution of carriers, the maternal side being most active.

Key words

A.I.B. Amino acids Active transport Accumulation Guinea pig Placenta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen, H. N., Streicher, J. A.: Association between rapid growth and elevated cell concentration of amino acids. I. In fetal tissues. J. Biol. Chem.175, 95–102 (1948)Google Scholar
  2. Christensen, H. N., Liang, M., Archer, F. G.: A distinct Na+-requiring transport system for alanine, serine, cysteine and similar amino acids. J. Biol. Chem.242, 5237–5246 (1967)Google Scholar
  3. Dancis, J., Money, W. L., Springer, D., Levitz, M.: Transport of amino acids by placenta. Am. J. Obstet. Gynecol.101, 820–829 (1968)Google Scholar
  4. Enders, R. H., Judd, R. M., Donohue, T. M., Smith, C. H.: Placental amino acid uptake. III. Transport systems for neutral amino acids. Am. J. Physiol.230, 706–710 (1976)Google Scholar
  5. Gresham, E. L., Simons, P. S., Battaglia, F. C.: Maternal-fetal urea concentration difference in man: Metabolic significance. J. Pediat.79, 809–811 (1971)Google Scholar
  6. Gresham, E. L., James, E. J., Raye, L. R., Battaglia, F. C., Makowski, E. L., Meschia, G.: Production and excretion of urea by the fetal lamb. Pediatrics50, 372–379 (1972)Google Scholar
  7. Hill, P. M. M., Young, M.: Net placental transfer of free amino acids against varying concentrations. J. Physiol. (Lond.)235, 409–422 (1973)Google Scholar
  8. Kastendieck, D., Moll, W.: The placental transfer of lactate and bicarbonate in the guinea pig. Pflügers Arch.370, 165–171 (1977)Google Scholar
  9. Van Kreel, B. K., Van Dijk, J. P.: The influence of flow rates and flow distributions on diffusion controlled transport across the isolated guinea pig placenta. J. Comp. Physiol.115, 253–264 (1977)Google Scholar
  10. Leichtweiss, H. P., Schröder, H.: Untersuchungen über den Glucose-transport durch die isolierte, beiderseits künstlich perfundierte Meerschweinchenplacenta. Pflügers Arch.325, 139–148 (1971)Google Scholar
  11. Litonjua, A. D., Canlas, M., Soliman, J., Paulino, Q.: Uptake of α-aminoisobutyric acid in placental slices at term. Am. J. Obstet. Gynecol.99, 242–246 (1967)Google Scholar
  12. Longo, L. D., Yuen, P., Gusseck, D. J.: Anaerobic, glycogen-dependent transport of amino acid by the placenta. Nature243, 531–533 (1973)Google Scholar
  13. Miller, K. R., Berndt, W. O.: Characterization of neutral amino acid accumulation by human term placental slices. Am. J. Physiol.227, 1236–1242 (1974)Google Scholar
  14. Oxender, D. J., Christensen, H. N.: Transcellular concentration as a consequence of intracellular accumulation. J. Biol. Chem.234, 2321–2324 (1959)Google Scholar
  15. Oxender, D. J., Christensen, H. N.: Distinct mediating systems for transport of neutral amino acids by the Ehrlich cell. J. Biol. Chem.238, 3683–3699 (1963)Google Scholar
  16. Romualdes, A. G., Litonjua, A. D.: Amino acid uptake by human placental slices. Am. J. Obstet. Gynecol.109, 1225–1231 (1971)Google Scholar
  17. Schneider, H., Dancis, J.: Amino acid transport in human placental slices. Am. J. Obstet. Gynecol.120, 1092–1098 (1974)Google Scholar
  18. Smith, C. H., Adcock, E. W., Teasdale, F., Meschia, G., Battaglia, F. C.: Placental amino acid uptake: tissue preparation, kinetics and preincubation effect. Am. J. Physiol.224, 558–564 (1973)Google Scholar
  19. Smith, C. H., Depper, R.: Placental amino acid uptake. II. Tissue preincubation, fluid distribution and mechanisms of regulation. Pediatr. Res.8, 697–703 (1974)Google Scholar
  20. Sybulski, M., Tremblay, P. C.: Uptake and incorporation into protein of radioactive glycine by human placentas in vitro. Am. J. Obstet. Gynecol.97, 1111–1118 (1967)Google Scholar
  21. Umbreit, W. W., Bursis, R. H., Stauffer, J. F.: Manometric techniques, 4th edition, p. 152. Minneapolis: Burgess 1968Google Scholar
  22. Young, M., Prenton, M. A.: Maternal and foetal plasma amino acid concentrations during gestation and in retarded foetal growth. J. Obstet. Gynaecol. Br. Commonw.76, 333–344 (1969)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. P. van Dijk
    • 1
  • B. K. van Kreel
    • 1
  1. 1.Department of Chemical Pathology, Faculty of MedicineErasmus UniversityRotterdamThe Netherlands

Personalised recommendations