Advertisement

Pflügers Archiv

, Volume 377, Issue 3, pp 201–207 | Cite as

On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss

  • R. F. Hess
  • F. W. Campbell
  • T. Greenhalgh
Excitable Tissues and Central Nervous Physiology

Abstract

In this investigation contrast threshold measurements are compared with supra-threshold perception for a group of human amblyopes. The results indicate that human amblyopia involves, in some cases, not only loss of sensitivity but spatial distortion. Thus a new group of amblyopes can now be identified in which only distortion occurs. These results have important physiological implications for both the normal and abnormal visual systems. Neurophysiologists investigating visual loss from deprivation should assess whether similar distortions occur in animals. This question may hold the answer to whether the present animal models are relevant to the human condition.

Key words

Contrast sensitivity Spatial distortion Neural dysfunction Amblyopia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, F. W., Green, D. G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.)181, 576–593 (1965)Google Scholar
  2. Campbell, F. W., Robson, J. G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.)197, 551–566, (1968)Google Scholar
  3. Campbell, F. W., Hess, R. F., Watson, P. G., Banks, R. V.: Preliminary results of physiologically based treatment of amplyopia. Br. J. Ophthal. (in press), 1978Google Scholar
  4. Goodman, J. W.: Introduction to Fourier optics. McGraw-Hill Physical and Quantum Electronic Series, London, pp. 261 (1968)Google Scholar
  5. Gstalder, R. J., Green, D. G.: Laser interferometric acuity in amblyopia. J. Pediatr. Ophthal.8, 251–265 (1971)Google Scholar
  6. Helmholtz, H. von.: Helmholtz's treatise on physiological optics. (J. P. C. Southall, ed.), Vol. I pp. 34), New York: Dover PublicationsGoogle Scholar
  7. Hess, R. F.: Assessment of stimulus field size for strabismic amblyopes. Am. J. Optom Physiol. Optics54, 292–299 (1977)Google Scholar
  8. Hess, R. F.: Eyemovements and grating acuity in strabismic amblyopia. Ophthal. Res.9, 225–237 (1977b)Google Scholar
  9. Hess, R. F., Howell, E. R.: The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification. Vision Res.17, 1049–1055 (1977)Google Scholar
  10. Hess, R. F., Howell, E. R.: The influence of field size for aperiodic stimulus in strabismic amblyopia. Vision Res.18, 501–503 (1978)Google Scholar
  11. Hess, R. F., Smith, G.: Do optical aberrations contribute to visual loss in strabismic amblyopia. Am. J. Optom. Physiol. Optics54, 627–633 (1977)Google Scholar
  12. Ikeda, H., Wright, M. J.: Properties of LGN cells in kittens reared with convergent squint: A neurophysiological demonstration of amblyopia. Exp. Brain Res.25, 63–77 (1976)Google Scholar
  13. Jacobson, S. G.: Behavioural studies of spatial vision in the cat. Ph. D thesis, University of London 1977Google Scholar
  14. Levi, D. M., Harwerth, R. S.: Spatio-temporal interactions in anisometropic and strabismic amblyopia. Invest. Opthal. Visual Sci.16, 90–95 (1977)Google Scholar
  15. Mitchell, D. E., Freeman, R. D., Westheimer, G.: The effect of orientation on the modulation sensitivity for interference frings on the retina. J. Opt. Soc. Amer.57, 246–249 (1967)Google Scholar
  16. Pugh, M.: Visual distortion in amblyopia. Br. J. Opthal.42, 449–460 (1958)Google Scholar
  17. Wade, N. J.: Distortions and disappearance of geometric patterns. Perception6, 407–433 (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. F. Hess
    • 1
  • F. W. Campbell
    • 1
  • T. Greenhalgh
    • 1
  1. 1.Physiological LaboratoryCambridgeUK

Personalised recommendations