Pflügers Archiv

, Volume 409, Issue 4–5, pp 462–467 | Cite as

Cultivation, morphology, and electrophysiology of contractile rat myoballs

  • S. Boldin
  • U. Jäger
  • J. P. Ruppersberg
  • S. Pentz
  • R. Rüdel
Excitable Tissues and Central Nervous Physiology


Myoballs were cultured from neonatal rat skeletal muscle without the use of antimitotic drugs. Electron microscopic investigation showed that 7-day-old myoballs are multinucleated syncytia in a state of differentiation where filaments are abundant and already in hexagonal arrays. The resting potential of 142 myoballs kept at 20°C was not correlated with the cell size. Its mean value was −64 mV. Cells with a high resting potential were capable of generating action potentials with a threshold of −51 mV, an overshoot of +31 mV, and a rate of rise of 100 V/s. The steady-state current-voltage relation showed inward rectification on hyperpolarization and outward rectification on depolarization. The dynamic sodium and potassium currents were investigated at 37°C with the whole-cell-recording technique. The sodium current had its maximum at −20 mV. The potassium current showed delayed activation and a very slow and incomplete inactivation. The electrophysiological results from these cultured cells are very similar to those obtained from adult cells.

Key words

Myoballs Muscle culture Current-voltage relation Whole-cell patch-clamp Na+- and K+ currents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian RH, Marshall MW (1977) Sodium currents in mammalian muscles. J Physiol (Lond) 268:223–250Google Scholar
  2. 2.
    Almers W, Stanfield PR, Stühmer W (1983) Slow changes in currents through sodium channels in frog muscle membrane. J Physiol (Lond) 339: 253–271Google Scholar
  3. 3.
    Almers W, Roberts WM, Ruff RL (1984) Voltage clamp of rat and human skeletal muscle: measurements with an improved loose-patch technique. J Physiol (Lond) 347: 751–768Google Scholar
  4. 4.
    Beam KG, Donaldson PL (1983) A quantitative study of potassium channel kinetics in rat skeletal muscle from 1 to 37°C. J Gen Physiol 81:485–512Google Scholar
  5. 5.
    Boldin S, Hack G, Pentz S, Rüdel R (1986) Cultivation of contractile rat myoballs. Pflügers Arch 406:R30Google Scholar
  6. 6.
    D'Alonzo AJ, Argentieri TM, McArdle JJ (1982) Ouabain and tetrodotoxin block in the myotonia of skeletal muscle induced with 20,25-diazacholesterol. J Pharmacol Exp Ther 222:401–404Google Scholar
  7. 7.
    DeCoursey TE, Bryant SH, Lipicky RJ (1982) Sodium currents in human skeletal muscle fibres. Muscle Nerve 5:614–618Google Scholar
  8. 8.
    Duval A, Léoty C (1978) Ionic currents in mammalian fast skeletal muscle. J Physiol (Lond) 278:403–423Google Scholar
  9. 9.
    Farley JM, Narahashi T (1983) Effects of drugs on acetylcholine-activated ionic channels of internally perfused chick myoballs. J Physiol (Lond) 337:753–768Google Scholar
  10. 10.
    Fischbach FD, Lass Y (1978) Acetylcholine noise in cultured chick myoballs: a voltage clamp analysis. J Physiol (Lond) 280:515–526Google Scholar
  11. 11.
    Frelin C, Vijverberg HPM, Romey G, Vigne P, Lazdunski M (1984) Different functional states of tetrodotoxin sensitive and tetrodotoxin resistant Na+ channels occur during the in vitro development of rat skeletal muscle. Pflügers Arch 402:121–128Google Scholar
  12. 12.
    Fukuda J, Fischbach GD, Smith jr TG (1976a) A voltage clamp study of the sodium, calcium and chloride spikes of chick skeletal muscle cells grown in tissue culture. Dev Biol 49:412–426Google Scholar
  13. 13.
    Fukuda J, Henhart MP, Fischbach GD, Smith TG jr (1976b) Physiological and structural properties of colchicine-treated skeletal muscle cells grown in tissue culture. Dev Biol 49:395–411Google Scholar
  14. 14.
    Gonoi T, Sherman SJ, Catterall WA (1985) Voltage clamp analysis of tetrodotoxin-sensitive and-insensitive sodium channels in rat muscle cells developing in vitro. J Neurosci 5:2550–2564Google Scholar
  15. 15.
    Hamill OP, Sakmann B (1981) Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294:462–464Google Scholar
  16. 16.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch clamp techniques for high-resolution current recording from cell and cell-free membrane patches. Pflügers Arch 391:85–100Google Scholar
  17. 17.
    Horn R, Brodwick MS (1980) Acetylcholine-induced current in perfused rat myoballs. J Gen Physiol 75:297–321Google Scholar
  18. 18.
    Jäger U, Boldin S, Rüdel R (1986) Membrane parameters of rat myoballs. Pflügers Arch 406:R30Google Scholar
  19. 19.
    Kwieciński H, Lehmann-Horn F, Rüdel R (1984) Membrane currents in human intercostal muscle at varied extracellular potassium. Muscle Nerve 7:465–469Google Scholar
  20. 20.
    Lough J, Bischoff R (1977) Differentiation of creatine phosphokinase during myogenesis: quantitative fractionation of isozymes. Dev Biol 57:330–344Google Scholar
  21. 21.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  22. 22.
    Merickel M, Gray R, Chauvin P, Appel S (1981) Cultured muscle from myotonic muscular dystrophy patients: altered membrane electrical properties. Proc Natl Acad Sci USA 78:648–652Google Scholar
  23. 23.
    Pappone PA (1980) Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J Physiol (Lond) 306:377–410Google Scholar
  24. 24.
    Pentz S, Hörler H (1984) Herzmuskelzellen der Ratte — ein in vitro-Testsystem. In: Maurer HR (ed) Zellkultur-Methoden. Kongreßbericht (10.–12.10.1984) BerlinGoogle Scholar
  25. 25.
    Ruppersberg JP (1984) Über Myobälle aus menschlicher Muskulatur sowie Membranparameter von Muskelzellen. Tagung der Dt Phys Ges 1:69–81Google Scholar
  26. 26.
    Senges J, Rüdel R, Schmid-Wiedersheim E (1972) Effects of sparteine on normal and myotonic mammalian skeletal muscle. Naunyn-Schmiedeberg's Arch Pharmacol 274:348–356Google Scholar
  27. 27.
    Szasz G, Busch EW, Farohs HB (1970) Serum-Kreatinkinase, Teil 1 (Methodische Erfahrungen und Normalwerte mit einem neuen handelsüblichen Test). Dtsch Med Wochenschr 95:829–835Google Scholar
  28. 28.
    Trautmann A, Delaporte C, Marty A (1986) Voltage-dependent channels of human muscle cultures. Pflügers Arch 406:163–172Google Scholar
  29. 29.
    Yasin R, Van Beer G, Nurse K, Al Ani S, Landon DN, Tompson DJ (1977) A quantitative technique of growing human skeletal muscle in culture starting from mononucleated cells. J Neurol Sci 32:347–360Google Scholar
  30. 30.
    Zite-Ferenczy F, Matthias K, Rüdel R (1986) The dynamic sodium current of human skeletal muscle. Fortschr Zoologie 33:52–59Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. Boldin
    • 1
  • U. Jäger
    • 1
  • J. P. Ruppersberg
    • 1
  • S. Pentz
    • 2
  • R. Rüdel
    • 1
  1. 1.Abteilung für Allgemeine Physiologie der Universität UlmUlmGermany
  2. 2.Abteilung für Klinische Genetik der Universität UlmUlmGermany

Personalised recommendations