Advertisement

Pflügers Archiv

, Volume 355, Issue 3, pp 267–271 | Cite as

Permeability pathways for non-electrolytes through bufo bufo gall-bladder

  • S. Curci
  • V. Casavola
  • C. Lippe
Article

Summary

Amphotericin B treatment increases the thiourea,d-xylose and mannitol fluxes and lowers those of urea, N-methyl-urea, acetamide, formamide, and N-N′-dimethyl-thiourea. The degree of flux inhibition is related to the cellular permeability of these compounds.

Most probably Amphotericin B increases the permeability of all those molecules across the luminal plasma membrane, but simultaneously elicits a cellular swelling, which reduces the diffusion across the lateral plasma membranes. This effect masks the polyene effect especially for molecules showing a mainly cellular permeation pathway such as amides and lipid, soluble molecules.

Key words

Amphotericin B Gall-Bladder Non Electrolytes Permeation Pathways 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, T. E., Dennis, V. W., Weigl, A. M.: The effect of Amphotericin B on the water and non electrolyte permeability of thin lipid membranes. J. gen. Physiol.53, 133–156 (1969)Google Scholar
  2. 2.
    Cremaschi, D., Montanari, C., Simonic, T., Lippe, C.: Cholesterol in plasma membranes of rabbit gall-bladder epithelium tested with Amphotericin B. Arch. Int. Physiol. Biochim.79, 33–43 (1971)Google Scholar
  3. 3.
    De Kruijff, B., Demel, R. A.: Polyene antibiotic-sterol interactions in membranes of Acholeplasma Laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-sterol complexes. Biochim. biophys. Acta. (Amst.)339, 57–70 (1974)Google Scholar
  4. 4.
    Dennis, V. W., Stead, N. W., Andreoli, T. E.: Molecular aspects of polyene and sterol-dependent pore formation in thin lipid membranes. J. gen. Physiol.55, 375–400 (1970)Google Scholar
  5. 5.
    Holz, R., Finkelstein, A.: The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics Nystatin and Amphotericin B. J. gen. Physiol.56, 125–145 (1970)Google Scholar
  6. 6.
    Lippe, C., Curci, S.: Non-electrolyte permeability across Bufo bufo gall-bladder. Comp. Biochem. Physiol.38A, 473–475 (1971)Google Scholar
  7. 7.
    Lippe, C., Giordana, B.: Effects of Amphotericin B on the permeability of the small and large intestines of Testudo hermanni. Biochim. biophys. Acta (Amst.)135, 966–972 (1967)Google Scholar
  8. 8.
    Mc D. Tormey, J., Diamond, J. M.: The ultrastructural route of fluid transport in rabbit gall-bladder. J. gen. Physiol.50, 2031–2060 (1967)Google Scholar
  9. 9.
    Smulders, A. P., Wright, E. M.: The magnitude of non-electrolyte selectivity in the gall-bladder epithelium. J. Membrane Biol.5, 297–318 (1971)Google Scholar
  10. 10.
    Svelto, M., Perrini, M. C. R., Lippe, C.: Anomalous effect of Amphotericin B on the non-electrolyte fluxes through the skin of Rana esculenta. Gen. Comp. Pharmacol (in press) 1975Google Scholar
  11. 11.
    Van Os, C. H., Slegers, J. F. G.: Path of osmotic water flow through rabbit gall-bladder epithelium. Biochim. biophys. Acta (Amst.)291, 197–207 (1973)Google Scholar
  12. 12.
    Wright, E. M., Diamond, J. M.: Patterns of non-electrolyte permeability. Proc. roy. Soc. B172, 227–271 (1969)Google Scholar
  13. 13.
    Wright, E. M., Smulders, A. P., Mc D. Tormey, J.: The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gall-bladder. J. Membrane Biol.7, 198–219 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • S. Curci
    • 1
  • V. Casavola
    • 1
  • C. Lippe
    • 1
  1. 1.Institute of General PhysiologyUniversity of BariBariItaly

Personalised recommendations