Pflügers Archiv

, Volume 367, Issue 1, pp 7–13 | Cite as

Nystagmic modulation of neuronal activity in rabbit cerebellar flocculus

  • Rodolfo Llinás
  • John I. Simpson
  • Wolfgang Precht
Article

Summary

  1. 1.

    The responses of neuronal elements in the flocculus of the awake, restrained rabbit were recorded during horizontal vestibular nystagmus in the dark.

     
  2. 2.

    Purkinje cells showed both vestibular (Types I and II) and eye movement modulation of simple spike activity. Type I Purkinje cells most commonly were inhibited in association with the ipsilaterally directed fast phase of nystagmus and excited during contralaterally directed fast phases. Type II Purkinje cells had a similar modulation but in the opposite direction. Variations on this pattern included an increase in firing during fast phases in both directions.

     
  3. 3.

    Presumed mossy fibers and granule cells also exhibited both vestibular and nystagmic modulation in various combinations. The nystagmic modulation often began during the fast phase and continued into the early part of the slow phase. Mossy fibers showing both vestibular and nystagmic modulation probably arise from the vestibular nuclei and/or the perihypoglossal nuclei.

     
  4. 4.

    Floccular control of brain stem nuclei utilizes not only vestibular but also eye movement signals and probably all sensory and internal signals involved in the regulation of gaze.

     

Key words

Cerebellum Vestibular system Nystagmus Mossy fiber Eye movements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, K., Baker, R., Simpson, J. I.: Afferents to the vestibulocerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res.98, 582–589 (1975)Google Scholar
  2. Baker, R., Berthoz, A.: Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res.86, 121–127 (1975)Google Scholar
  3. Baker, R., Gresty, M., Berthoz, A.: Eye movement related neurons in the prepositus hypoglossi nucleus. Neurosci. Abst.1, 236 (1975)Google Scholar
  4. Baker, R., Precht, W., Llinás, R.: Cerebellar modulatory action on the vestibulo-trochlear pathway in the cat. Exp. Brain Res.15, 364–385 (1972)Google Scholar
  5. Blanks, R. H. I., Estes, M. S., Markham, C. H.: Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Responses to constant angular acceleration. J. Neurophysiol.38, 1250–1268 (1975)Google Scholar
  6. Blanks, R. H. I., Precht, W.: Functional characterization of primary vestibular afferents in the frog. Exp. Brain Res. (in press, 1976)Google Scholar
  7. Brodal, A., Hoivik, B.: Site and mode of termination of primary vestibulocerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch. ital. Biol.102, 1–21 (1964)Google Scholar
  8. Brodal, A., Torvik, A.: Über den Ursprung der sekundaren vestibulocerebellaren Fasern bei der Katze. Eine experimentellanatomische Studie. Arch. Psychiat. Nervenkr.195, 550–567 (1957)Google Scholar
  9. Dichgans, J., Schmidt, C. L., West, E. R.: Frequency modulation of afferent and efferent unit activity in the vestibular nerve by oculomotor impulses. In: Progr. in Brain Res. Vol. 37 (A. Brodal and O. Pompeiano, eds.), pp. 449–454. Amsterdam: Elsevier 1972Google Scholar
  10. Duensing, F., Schaefer, K.-P.: Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch. Psychiat. Nervenkr.198, 225–252 (1958)Google Scholar
  11. Eccles, J. C., Llinás, R., Sasaki, K.: The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp. Brain Res.1, 82–101 (1966)Google Scholar
  12. Fernandez, C., Goldberg, J. M.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol.34, 661–675 (1971)Google Scholar
  13. Fuchs, A. F., Kimm, J.: Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. J. Neurophysiol.38, 1140–1161 (1975)Google Scholar
  14. Fukuda, J., Highstein, S. M., Ito, M.: Cerebellar inhibitory control of the vestibulo-ocular reflex investigated in rabbit IIIrd nucleus. Exp. Brain Res.14, 511–526 (1972)Google Scholar
  15. Ghelarducci, B., Ito, M., Yagi, N.: Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res.87, 66–72 (1975)Google Scholar
  16. Goldberg, J. M., Fernandez, C.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol.34, 635–660 (1971)Google Scholar
  17. Grillner, S.: Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol. Rev.55, 247–304 (1975)Google Scholar
  18. Harlay, F., Pellet, J., Tardy, M.-F., Dubrocard, S.: Activité unitaire corticocérébelleuse et mouvements oculaires: modifications associées aux saccades du sommeil et de la veille. Physiol. Behav.12, 939–949 (1974)Google Scholar
  19. Ito, M., Shiida, T., Yagi, N., Yamamoto, M.: Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus. Brain Res.65, 170–174 (1974)Google Scholar
  20. Keller, E. L.: Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res.24, 459–471 (1976)Google Scholar
  21. Lisberger, S. G., Fuchs, A. F.: Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movements. Brain Res.69, 347–353 (1974)Google Scholar
  22. Llinás, R., Motor aspects of cerebellar control. Physiologist17, 19–46 (1974)Google Scholar
  23. Llinás, R., Precht, W., Clarke, M.: Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res.13, 408–431 (1971)Google Scholar
  24. Louie, A. W., Kimm, J.: The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Exp. Brain Res.24, 447–457 (1976)Google Scholar
  25. MacKay, D. M.: Visual stability and voluntary eye movements. In: Handbook of sensory physiology, Vol. 7, Part 3 A (R. Jung, ed.), pp. 307–331. Heidelberg-New York: Springer 1973Google Scholar
  26. Maekawa, K., Simpson, J. I.: Climbing fiber responses evoked in vestibulo-cerebellum of rabbit from visual system. J. Neurophysiol.36, 649–666 (1973)Google Scholar
  27. Precht, W., Llinás, R.: Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp. Brain Res.9, 30–52 (1969)Google Scholar
  28. Precht, W., Llinás, R., Clarke, M.: Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res.13, 378–407 (1971)Google Scholar
  29. Precht, W., Simpson, J. I., Llinás, R.: Responses of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pflügers Arch.367, 1–6 (1976)Google Scholar
  30. Robinson, D. A.: Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications (G. Lennerstrand and P. Bach-y-Rita, eds.), pp. 337–374. Oxford: Pergamon Press 1975Google Scholar
  31. Shinoda, Y., Yoshida, K.: Dynamic characteristics of responses to horizontal head angular acceleration in the vestibulo-ocular pathway in the cat. J. Neurophysiol.37, 653–673 (1974)Google Scholar
  32. Shimuzu, H., Precht, W.: Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J. Neurophysiol.29, 467–492 (1966)Google Scholar
  33. Simpson, J. I., Llinás, R., Precht, W.: Unit activity in the cerebellar flocculus of alert rabbit during physiological vestibular and visual stimulation. Proc. IUPS (abst.)11, 229 (1974)Google Scholar
  34. Takemori, S., Cohen, B.: Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res.72, 213–224 (1974)Google Scholar
  35. Walsh, J. V., Houk, J. C., Mugnaini, E.: Identification of unitary potentials in turtle cerebellum and correlations with structures in granular layer. J. Neurophysiol.37, 30–47 (1974)Google Scholar
  36. Wilson, V. J., Maeda, M., Franck, J. I. Input from neck afferents to the cat flocculus. Brain Res.89, 123–128 (1975)Google Scholar
  37. Wolfe, J. W., Rawlings, C. A., Llinás, R.: A procedure for chronic microelectrode recording from cerebellar cortex in the awake cat and monkey. Physiol. Behav.10, 967–970 (1973)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Rodolfo Llinás
    • 1
  • John I. Simpson
    • 1
  • Wolfgang Precht
    • 2
  1. 1.Division of Neurobiology, Department of Physiology and BiophysicsUniversity of IowaIowa CityUSA
  2. 2.Neurobiologische AbteilungMax-Planck Institut für HirnforschungFrankfurt am MainFederal Republic of Germany

Personalised recommendations