Pflügers Archiv

, Volume 362, Issue 2, pp 113–119 | Cite as

Alteration of shivering threshold in cold-and warm-adapted guinea pigs following intrahypothalamic injections of noradrenaline and of an adrenergic alpha-receptor blocking agent

  • Eugen Zeisberger
  • Kurt Brück


The role of adrenergic receptors in the central thermoregulatory pathways controlling the shivering activity has been studied in groups of cold-adapted (CA), warm-adapted (WA) and newborn (NB) guinea pigs, which show quantitative differences in shivering threshold. In the CA and NB animals, which normally start to shiver at lower mean body temperature levels than the WA controls, microinjection of noradrenaline (1 μg in 1 μl) into the noradrenaline-sensitive area of the anterior hypothalamus elicited shivering at higher body temperatures at which normally only WA animals start to shiver. Similar injections into the hypothalamus of WA animals did not induce any further shift of the shivering threshold. Microinjections of the alpha-receptor blocking agent phentolamine into the same brain area shifted the shivering threshold in all groups of animals to lower body temperatures, the shift being proportional to the injected dose of phentolamine. The CA and NB animals required higher doses of phentolamine to produce a change in shivering threshold. It is concluded that adrenergic alpha receptors are involved in the central thermoregulatory mechanisms which adjust the thresholds for the thermoregulatory reactions.

Key words

Adaptation, physiological Body temperature regulation Shivering control Biogenic amines, hypothalamic Adrenergic alpha receptor blockaders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckman, A. L., Eisenman, J. S.: Microelectrophoresis of biogenic amines on hypothalamic themosensitive cells. Science170, (3955), 334–336 (1970)Google Scholar
  2. 2.
    Bloom, F. E.: Cyclic AMP and the inhibition of cerebellar Purkinje cells by noradrenergic synapses. In: Neurohumoral coding of brain function (R. D. Myers and R. R. Drucker-Colin, eds.). New York: Plenum Press 1974Google Scholar
  3. 3.
    Bloom, F. E., Chu, N.-S., Hoffer, B. J., Nelson, C. N., Siggins, G. R.: Studies on the function of central noradrenergic neurons. Neurosciences Research 5: Chemical approaches to brain function. New York-London: Academic Press 1973Google Scholar
  4. 4.
    Bruinvels, J.: Temperature responses to noradrenaline administered by different routes in rats. In: Temperature regulation and drug action (J. Lomax, E. Schönbaum, and J. Jacob, eds.). Basel: Karger 1975Google Scholar
  5. 5.
    Brück, K.: Cold adaptation in man. Proc. Int. Satellite Symposium on Depressed Metabolism and Cold Thermogenesis. Springfield, Ill.: Ch. C. Thomas (in press, 1976)Google Scholar
  6. 6.
    Brück, K., Wünnenberg, B.: The influence of ambient temperature in the process of replacement of non-shivering by shivering thermogenesis during postnatal development. Fed. Proc.25, 1332–1336 (1966)Google Scholar
  7. 7.
    Brück, K., Wünnenberg, W.: Die Steuerung des Kältezitterns beim Meerschweinchen. Pflügers Arch. ges. Physiol.293, 215–225 (1967a)Google Scholar
  8. 8.
    Brück, K., Wünnenberg, W.: Eine kälteadaptative Modifikation: Senkung der Schwellentemperaturen für Kältezittern. Pflügers Arch. ges. Physiol.293, 226–235 (1967b)Google Scholar
  9. 9.
    Brück, K., Wünnenberg, W.: “Meshed” control of two effector systems: nonshivering and shivering thermogenesis. In: Physiological and behavioral temperature regulation (J. D. Hairdy, A. P. Gagge, and J. A. J. Stolwijk, eds.). Springfield, Ill.: Ch. C. Thomas 1970Google Scholar
  10. 10.
    Brück, K., Wünnenberg, W., Gallmeier, H., Ziehm, B.: Shift of threshold temperature for shivering and heat polypnea as a mode thermal adaptation. Pflügers Arch.321, 159–172 (1970)Google Scholar
  11. 11.
    Brück, K., Wünnenberg, W., Zeisberger, E.: Comparison of cold-adaptive metabolic modifications in different species, with special reference to the miniature pig. Fed. Proc.28, (3), 1035–1041 (1969)Google Scholar
  12. 12.
    Brück, K., Wünnenberg, W., Zeisberger, E.: Integration of nonshivering thermogenesis in the thermoregulatory system. In: Nonshivering thermogenesis (Proc. of the Symposium held in Prague 1970) (L. Janský, ed.). Prague: Academia 1971Google Scholar
  13. 13.
    Burks, T. F.: Central alpha adrenergic receptors in thermoregulation. Neuropharmacology11, 615–624 (1972)Google Scholar
  14. 14.
    De Groat, W. C., Volle, R. L.: Interactions between the catecholamines and ganglionic stimulating agents in sympathetic ganglia. J. Pharmacol. exp. Ther.154, 200–215 (1966)Google Scholar
  15. 15.
    Dhawan, B. N., Dua, P. R.: Evidence for the presence of α-adrenoceptors in the central thermoregulatory mechanism of rabbits. Brit. J. Pharmacol.43, 497–503 (1971)Google Scholar
  16. 16.
    Dyball, R. E. J., Dyer, R. G., Drewett, R. F.: Chemical sensitivity of preoptic neurones which project to the medial basal hypothalamus. Brain Res.71, 140–143 (1974)Google Scholar
  17. 17.
    Feldberg, W., Saxena, P. N.: Effects of adrenoceptor blocking agents on body temperature. Brit. J. Pharmacol.43, 543–554 (1971)Google Scholar
  18. 18.
    Hori, T., Nakayama, T.: Effects of biogenic amines on central thermoresponsive neurons in the rabbit. J. Physiol. (Lond.)232, 71–86 (1973)Google Scholar
  19. 19.
    Jell, R. M.: Responses of rostral hypothalamic neurons to peripheral temperature and to amines. J. Physiol. (Lond.)240, 295–307 (1974)Google Scholar
  20. 20.
    Jonsson, G., Fuxe, K., Hökfelt, T.: On the catecholamine innervation of the hypothalamus, with special reference to the median eminence. Brain Res.40, 271–281 (1972)Google Scholar
  21. 21.
    Keller, A. D.: The role of circulation in the physiology of heat regulation. Phys. Ther. Rev.30, 511–519 (1950)Google Scholar
  22. 22.
    Kennedy, M. S., Burks, T. F.: Dopamine receptors in the central thermoregulatory mechanism of the cat. Neuropharmacology13, 119–128 (1974)Google Scholar
  23. 23.
    Kobayashi, H., Libet, B.: Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. J. Physiol. (Lond.)208, 353–372 (1970)Google Scholar
  24. 24.
    Kobayashi, R. M., Palkovits, M., Jacobowitz, D. M., Kopin, I. J.: Biochemical mapping of the noradrenergic projection from the locus coeruleus. Neurology (Minneap.)25, 223–233 (1975)Google Scholar
  25. 25.
    Krnjević, K.: Chemical nature of synaptic transmission in vertebrates. Physiol. Rev.54, 418–540 (1974)Google Scholar
  26. 26.
    Krnjević, K.: Electrophysiology of dopamine receptors. In: Advances in neurology, vol. 9 (D. B. Caine, ed.). New York: Raven Press 1975Google Scholar
  27. 27.
    Lindvall, O., Björklund, A., Nobin, A., Stenevi, U.: The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J. comp. Neurol.154, 317–348 (1974)Google Scholar
  28. 28.
    Lomax, P., Foster, R. S.: Temperature changes induced by imidazoline sympathomimetics in the rat. J. Pharmacol. exp. Ther.167, 159–165 (1969)Google Scholar
  29. 29.
    Lomax, P., Foster, R. S., Kirkpatrick, W. E.: Cholinergic and adrenergic interactions in the thermoregulatory centers of the rat. Brain Res.14, 431–438 (1969)Google Scholar
  30. 30.
    Murakami, N.: Effects of iontophoretic application of 5-hydroxytryptamine, noradrenaline and acetylcholine upon hypothalamic temperature-sensitive neurons in rats. Jap. J. Physiol.23, 435–446 (1973)Google Scholar
  31. 31.
    Rudy, T. A., Wolf, H. H.: The effect of intrahypothalamically injected sympathomimetic amines on temperature regulation in the cat. J. Pharmacol. exp. Ther.179, 218–235 (1971)Google Scholar
  32. 32.
    Vogt, M.: Functional aspects of the role of catecholamines in the central nervous system. Brit. med. Bull.29, 168–172 (1973)Google Scholar
  33. 33.
    Weight, F. F.: Physiological mechanisms of synaptic modulation. The neurosciences: Third study program (F. O. Schmitt, and F. G. Worden, eds.). MIT Press 1974Google Scholar
  34. 34.
    Wünnenberg, W.: Thermo-integrative function of the hypothalamus. Proc. Int. Satellite Symposium on Depressed Metabolism and Cold Thermogenesis. Springfield, Ill.: Ch. C. Thomas (in press, 1976)Google Scholar
  35. 35.
    Wünnenberg, W., Brück, K.: Studies on the ascending pathways from the thermosensitive region of the spinal cord, Pflügers Arch.321, 233–241 (1970)Google Scholar
  36. 36.
    Zeisberger, E., Brück, K.: Central effects of noradrenaline on the control of body temperature in the guinea pig. Pflügers Arch.322, 152–166 (1971a)Google Scholar
  37. 37.
    Zeisberger, E., Brück, K.: Effect of intrahypothalamic noradrenaline injection on the threshold temperatures for shivering and nonshivering thermogenesis. J. Physiol. (Paris)63, 464–467 (1971b)Google Scholar
  38. 38.
    Zeisberger, E., Brück, K.: Effect of intrahypothalamically injected noradrenergic and cholinergic agents on thermoregulatory responses. In: The pharmacology of thermoregulation. (E. Schönbaum, and P. Lomax, eds.) Basel: Karger 1973Google Scholar
  39. 39.
    Zeisberger, E., Berger-Gaude, E., Brück, K.: Drug effects on hypothalamic structures participating in the control of thermogenesis. Proc. Int. Satellite Symposium on Depressed Metabolism and Cold Thermogenesis in Prague 1974 (in press)Google Scholar
  40. 40.
    Zeisberger, E., Brück, K., Wünnenberg, W., Wietasch, C.: Das Ausmaß der zitterfreien Thermogenese des Meerschweinchens in Abhängigkeit vom Lebensalter. Pflügers Arch. ges Physiol.296, 276–288 (1967)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Eugen Zeisberger
    • 1
  • Kurt Brück
    • 1
  1. 1.Zentrum für Physiologie der Justus Liebig-Universität GiessenGiessenGermany

Personalised recommendations