Pflügers Archiv

, Volume 365, Issue 1, pp 15–19 | Cite as

The inhibitory effect of reserpine on the active sodium transport across the frog bladder

  • Fumiaki Marumo
  • Takao Mishina
  • Yasushi Asano
  • Yohtalou Tashima
Article

Summary

  1. 1.

    The effects of reserpine and harman derivatives on the sodium transport across the frog bladder were examined using a short-circuit current method. The effects of harman derivatives on the Na,K-ATPase activity of the frog kidney were also investigated.

     
  2. 2.

    Reserpine and harman derivatives inhibited active sodium transport of the frog bladder and their inhibitory effect decreased as reserpine>harmine >harmaline=harman>harmalol.

     
  3. 3.

    Harman derivatives inhibited Na,K-ATPase activity of the frog kidney.

     
  4. 4.

    These results suggest that reserpine and harman derivatives inhibit active sodium transport by suppressing the Na,K-ATPase activity of the frog bladder.

     

Key words

Reserpine Active sodium transport Na,K-ATPase Frog bladder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, R. W.: Catecholamines and serotonin, Basic neurochemistry, p. 98. Boston: Little Brown, 1972Google Scholar
  2. 2.
    Asano, Y., Tashima, Y., Matsui, H., Nagano, K., Nakao, M.: (Na+-K+)-ATPase from the frog bladder and its relationship to sodium transport. Biochim. biophys. Acta (Amst.)219, 169, (1970)Google Scholar
  3. 3.
    Bernets, K. H., Pletscher, A., Da Prada, M.: Metal-dependent aggregation of biogenic amines: A hypothesis for their storage and release. Nature (Lond.)224, 281 (1969)Google Scholar
  4. 4.
    Canessa, M., Jaimovich, E., de la Fuente, M.: Harmaline: A competitive inhibitor of Na ion in the (Na++K+)-ATPase system, J. Membrane Biol.13, 263 (1973)Google Scholar
  5. 5.
    Fiske, C. H., Subbarow, Y.: The colorimetric determination of phosphorus. J. biol. Chem.66, 375 (1925)Google Scholar
  6. 6.
    Iversen, L. L.: The uptake and storage of noradrenaline in symoathetic nerves. London: Cambridge University Press 1967Google Scholar
  7. 7.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 275 (1951)Google Scholar
  8. 8.
    Marumo, F.: The effect of glucocorticoid on the water permeability of the toad bladder. Pflügers Arch. ges. Physiol.299, 149 (1968)Google Scholar
  9. 9.
    Sepulveda, F. V., Robinson, J. W. L.: Harmaline, a potent inhibitor of sodium-dependent transport. Biochim. biophys. Acta (Amst.)373, 527 (1974)Google Scholar
  10. 10.
    Snyder, S. H.: New developments in brain chemistry, Catecholamine metabolism and its relationship to the mechanism of action of psychotropic drugs. Amer. J. Orthopsychiat.37, 864 (1967)Google Scholar
  11. 11.
    Tashima, Y.: Removal of protein interference in the Fiske-Subbarow method by sodium dodecyl sulfate. Analyt. Biochem.69, 410 (1975)Google Scholar
  12. 12.
    Tissari, A. H., Schönhöfer, P. S., Bogdanski, D. F., Brodie, B. B.: Mechanism of biogenic amine transport. II. Relationship between sodium and the mechanism of ouabain blockade of the accumulation of serotonin and norepinephrine by synaptosomes. Molec. Pharmacol.5, 593 (1969)Google Scholar
  13. 13.
    Ussing, H. H., Zerahn, K.: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand.23, 110 (1951)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Fumiaki Marumo
    • 1
  • Takao Mishina
    • 1
  • Yasushi Asano
    • 1
  • Yohtalou Tashima
    • 2
  1. 1.Department of MedicineKitasato University School of MedicineSagamihara, KanagawaJapan
  2. 2.Department of BiochemistrySaitama Medical CollegeMoro, SaitamaJapan

Personalised recommendations