Pflügers Archiv

, Volume 365, Issue 1, pp 1–8 | Cite as

Effects of serosally added sugars on the transepithelial electrical properties of the perfused goldfish intestine

  • H. Albus
  • J. A. Groot
  • J. Siegenbeek van Heukelom
Article

Summary

  1. 1.

    A study has been made of the effect of serosally added sugars on the transmural potential difference and electrical resistance of the perfused goldfish intestine.

     
  2. 2.

    Addition of glucose at the serosal side resulted in a decrease of the transmural potential difference independent of the presence or absence of glucose at the mucosal side. The transepithelial resistance did not change.

     
  3. 3.

    The serosal glucose effect persisted in the presence of phlorizin at the mucosal side.

     
  4. 4.

    With the actively transported non-metabolized glucose analogue 3-oxy-methyglucose the same effects were observed as with glucose.

     
  5. 5.

    Replacement of NaCl by cholineCl, RbCl or LiCl at both sides of the intestine had a diminishing effect on the glucose evoked potentials and on the transepithelial conductance.

     
  6. 6.

    Phlorizin in concentrations lower than 10−4 M, at the serosal side did not influence neither the mucosal nor the serosal glucose effects.

     
  7. 7.

    Ouabain at the serosal side inhibited the serosal glucose effect and decreased the transepithelial conductance.

     
  8. 8.

    The results support the concept that sugar transport at the serosal side of the epithelial cell has features in common with the sodium-dependent sugar transport mechanism at the mucosal side.

     

Key words

Glucose evoked potentials Transepithelial conductance Goldfish intestine Nagradient hypothesis Convective diffusion model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, H., Siegenbeek van Heukelom, J.: The electrophysiological characteristics of glucose absorption of the goldfish intestine as compared to mammalian intestines. Comp. Biochem. Physiol.54A, 113–119 (1976)Google Scholar
  2. Barry, R. J. C., Dikstein, S., Matthews, J., Smyth, D. H., Wright, E. M.: Electrical potentials associated with intestinal sugar transfer. J. Physiol. (Lond.)171, 316–338 (1964)Google Scholar
  3. Barry, R. J. C., Smyth, D. H., Wright, E. M.: Short-circuit current and solute transfer by rat jejunum. J. Physiol. (Lond.)181, 410–431 (1965)Google Scholar
  4. Bronk, J. R., Ingham, P. A.: Evidence for carrier-mediated uptake and efflux of sugars at the serosal side of the the rat intestinal mucosa in vitro. J. Physiol. (Lond.)255, 481–495 (1976)Google Scholar
  5. Bronk, J. R., Leese, H. J.: Accumulation of amino acids and glucose by the mammalian small intestine. Symp. Soc. exp. Biol.28, 283–304 (1974)Google Scholar
  6. Crane, R. K.: Intestinal absorption of sugars. Physiol. Rev.40, 789–825 (1960)Google Scholar
  7. Crane, R. K.: Na+-dependent transport in the intestine and other animal tissues. Fed. Proc.24, 1000–1003 (1965)Google Scholar
  8. Csaky, T. Z., Glenn, J. E.: Urinary recovery of 3-methylglucose administered to rats. Amer. J. Physiol.188, 159–162 (1957)Google Scholar
  9. Diamond, J. M.: Mechanism of water transport by the gall-bladder. J. Physiol. (Lond.)161, 503–527 (1962)Google Scholar
  10. Esposito, G., Faelli, A., Capraro, V.: Sugar and electrolyte absorption in the rat intestine perfused “in vivo”. Pflügers Arch.340, 335–348 (1973)Google Scholar
  11. Esposito, G., Faelli, A., Capraro, V.: Effect of ethyl acetate on the transport of sodium and glucose in the hamster small intestine in vitro. Biochim. biophys. Acta (Amst.)426, 489–498 (1976)Google Scholar
  12. Frizzel, R. A., Schultz, S. G.: Ionic conductances of extracellular shunt pathway in rabbit ileum: Influence of shunt on transmural sodium transport and electrical potential differences. J. gen. Physiol.59, 318–346 (1972)Google Scholar
  13. Gauthier, G. F., Landis, S. C.: The relationship of ultrastructural and cytochemical features to absorptive activity in the goldfish intestine. Anat. Rec.172, 675–702 (1972)Google Scholar
  14. Hajjar, J. J., Lamont, A. S., Curran, P. F.: The Na-alanine interaction in rabbit ileum: Effect of Na on alanine fluxes. J. gen. Physiol.55, 277–296 (1970)Google Scholar
  15. Holman, G. D., Naftalin, R. J.: Galactose transport across the serosal border of rabbit ileum and its role in intracellular accumulation. Biochim. biophys. Acta (Amst.)382, 230–245 (1975)Google Scholar
  16. Kimmich, G. A., Randles, J.: A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells. J. Membrane Biol.23, 57–76 (1975)Google Scholar
  17. Kinter, W. B., Wilson, T. H.: Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine. J. Cell Biol.25, 19–39 (1965)Google Scholar
  18. Murer, H., Hopfer, U., Kinne-Saffran, E., Kinne, R.: Glucose transport in isolated brush-border and lateral-basal plasma membrane vesicles from intestinal epithelial cells. Biochim. biophys. Acta (Amst.)345, 170–179 (1974)Google Scholar
  19. Nafatalin, R. J., Curran, P. F.: Galactose transport in rabbit ileum. J. Membrane Biol.16, 257–278 (1974)Google Scholar
  20. Quay, J. D., Armstrong, W. McD.: Enhancement of net sodium transport in isolated bullfrog intestine by sugars and amino acids. Proc. Soc. exp. Biol. (N. Y.)131, 46–51 (1969)Google Scholar
  21. Quigley, J. D., Gotterer, G. S.: Distribution of Na+-K+-ATPase activity in rat intestinal mucosa. Biochim. biophys. Acta (Amst.)173, 456–468 (1969)Google Scholar
  22. Rose, R. C., Schultz, S. G.: Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. gen. Physiol.57, 639–663 (1971)Google Scholar
  23. Schultz, S. G., Curran, P. F.: Coupled transport of sodium and organic solutes. Physiol. Rev.50, 637–718 (1970)Google Scholar
  24. Schultz, S. G., Zalusky, R.: The interaction between active sodium transport and active sugar transport in the isolated rabbit ileum. Biochim. biophys. Acta (Amst.)71, 503–505 (1963)Google Scholar
  25. Schultz, S. G., Zalusky, R.: Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes. J. gen. Physiol.47, 567–584 (1964a)Google Scholar
  26. Schultz, S. G., Zalusky, R.: Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. gen. Physiol.47, 1043–1059 (1964b)Google Scholar
  27. Smith, M. W.: Sodium-glucose interactions in the goldfish intestine. J. Physiol. (Lond.)182, 559–573 (1966)Google Scholar
  28. Smith, M. W., Ellory, J. C.: Sodium-amino acid interactions in the intestinal epithelium. Phil. Trans. B262, 131–140 (1971)Google Scholar
  29. Smulders, A. P., Wright, E. M.: Galactose transport across the hamster small intestine; the effect of sodium electrochemical potential gradients. J. Physiol. (Lond.)212, 277–286 (1971)Google Scholar
  30. Smyth, D. H., Wright, E. M.: Streaming potentials in the rat small intestine. J. Physiol. (Lond.)182, 591–602 (1966)Google Scholar
  31. White, J. F., Armstrong, W. McD.: Effect of transported solutes on membrane potentials in bullfrog small intestine. Amer. J. Physiol.221, 194–201 (1971)Google Scholar
  32. Wilson, T. H.: In: Intestinal absorption, p. 69. Philadelphia: W. B. Saunders Co 1962Google Scholar
  33. Wright, E. M.: The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J. Physiol. (Lond.)185, 486–500 (1966)Google Scholar
  34. Yamamoto, T.: An electron microscope study of the columnar epithelial cell in the intestine of fresh water teleosts: Goldfish (Carassius auratus) and rainbow trout (Salmo irideus). Z. Zellforsch.72, 66–87 (1966)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • H. Albus
    • 1
  • J. A. Groot
    • 1
  • J. Siegenbeek van Heukelom
    • 1
  1. 1.Laboratory of Animal PhysiologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations