Pflügers Archiv - European Journal of Physiology

, Volume 413, Issue 3, pp 322–324 | Cite as

Intracellular Ca modulates K-inward rectification in cardiac myocytes

  • Michele Mazzanti
  • Dario DiFrancesco
Excitable Tissues Cand Central Nervous Physiology Short Communication


In cardiac myocytes, instantaneous inward rectification of the K-rectifying channel is abolished by removal of divalent cations from the intracellular environment and can be restored by addition of Mg ions at submillimolar concentrations, which has led to the proposal that Mg ions regulate inward rectification in these cells (Matsuda et al., 1987; Vandenberg, 1987; Matsuda, 1988). Here we report that Ca, too, reduces outward current flow through single inward rectifier channels in cell-free inside-out patches at much lower (submicromolar) concentrations. Intracellular Ca induces rectification by decreasing the probability of the main open channel state and by favouring the opening of channel substates. Ca concentrations generating rectification are in the range of the Ca transient during activity, suggesting that Ca ions can contribute to K-rectification during cardiac muscle contraction.


Human Physiology Muscle Contraction Cardiac Muscle Divalent Cation Channel State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. -.
    Allen, D.G. & Blinks, J.R. (1978) Nature273, 509–513CrossRefPubMedGoogle Scholar
  2. -.
    Bendukidze, Z., Isemberg, G. & Klockner, U. (1985) Basic Res. Cardiol. Supp.1, 13–18Google Scholar
  3. -.
    Blatter, L.A. & McGuigan, J.A.S. (1986) Quart. J. Exp. Physiol.71, 467–473CrossRefGoogle Scholar
  4. -.
    Cannell, M.B., Berlin, J.R. & Lederer, W.J. (1987) In: Cell Calcium and the control of Membrane Transport, Mandel, L.J. & Eaton, D.C. eds., Rockefeller Un. Press, N.Y., pp 202–214Google Scholar
  5. -.
    Chapman, R. (1986) J. Physiol.373, 163–179CrossRefPubMedPubMedCentralGoogle Scholar
  6. -.
    Fabiato, A. (1981) J. Gen. Physiol.78, 457–497CrossRefPubMedGoogle Scholar
  7. -.
    Fabiato, A. & Fabiato, F. (1979) J. Physiol. Paris75, 463–505PubMedGoogle Scholar
  8. -.
    Gupta, R.K., Gupta, P. & Moore, R.D. (1984) Ann. Rev. Biophys. Bioeng.13, 221–246CrossRefGoogle Scholar
  9. -.
    Hess, P., Metzger, P. & Weingart, R. (1982) J. Physiol.333, 173–188CrossRefPubMedPubMedCentralGoogle Scholar
  10. -.
    Matsuda, H. (1988) J. Physiol.397, 237–258CrossRefPubMedPubMedCentralGoogle Scholar
  11. -.
    Matsuda, H., Saigusa, A. & Irisawa, H. (1987) Nature325, 156–159CrossRefPubMedGoogle Scholar
  12. -.
    Sakmann, B. & Trube, G. (1984) J. Physiol.347, 641–657CrossRefPubMedPubMedCentralGoogle Scholar
  13. -.
    Tsien, R.Y. & Rink, T.J. (1980) Biochimica et Biophysica Acta,559, 623–638CrossRefGoogle Scholar
  14. -.
    Vandenberg, C.A. (1987) Proc. Natl. Acad. Sci. USA84, 2560–2564CrossRefPubMedPubMedCentralGoogle Scholar
  15. -.
    Wier, W.G. (1980) Science207, 1085–1087CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Michele Mazzanti
    • 1
  • Dario DiFrancesco
    • 1
  1. 1.Dipartimento di Fisiologia e Biochimica GeneraliMilanoItaly

Personalised recommendations