Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 413, Issue 3, pp 303–312 | Cite as

Recovery of hypertrophied rat hearts after global ischemia and reperfusion at different perfusion pressures

  • L. H. E. H. Snoeckx
  • G. J. van der Vusse
  • F. H. van der Veen
  • W. A. Coumans
  • R. S. Reneman
Heart, Circulation, Respiration and Blood; Aenvironmental and Exercise Physiology

Abstract

The ability to resist transient ischemia was studied in isolated hearts of 18 months old spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Both types of hearts showed optimal performance during the preischemic period when perfused at a diastolic perfusion pressure of 8.0 (WKY) and 13.3 (SHR) kPa. Hemodynamic recovery of WKY hearts during reperfusion at 8.0 kPa, following 45 min global ischemia, was satisfactory. Coronary perfusion completely normalized, contractility (dPlv/dtmax) was slightly depressed and cardiac output returned, on the average, to 40% of the preischemic values. In contrast, hemodynamic function of SHR hearts reperfused at 13.3 kPa was greatly depressed, as evidenced by almost complete abolition of cardiac output, severe reduction ofdPlv/dtmax and persistent underperfusion of the endocardial layers. In addition, the postischemic release of lactate dehydrogenase was retarded and enhanced. The release patterns of degradation products of adenine nucleotides showed a shift to the endstage produets xanthine and uric acid. The enhanced vulnerability of the hypertrophied heart to ischemia was even more expressed when the SHR hearts were reperfused at 8.0 kPa. Postischemic function was characterized by electrical instability, loss of contractility and cardiac output, and noreflow in the endocardial layers. Persistent accumulation of lactate and degradation products of adenine nucleotides in the postischemic hearts are in line with the lack of reperfusion. The present results indicate that a detailed mechanistic explanation for the reduced ability to withstand ischemia of SHR cannot be based on differences in ATP content or an altered anaerobic glycolitic activity prior and during ischemia. It is suggested that a defect on the circulatory level, probably caused by enhanced reactivity of the coronary vessels towards ischemia-elicited factors, is responsible for the higher vulnerability of hypertrophied heart to an ischemia insult.

Key words

Spontaneously hypertensive rat Myocardial hypertrophy Ischemia Reperfusion Noreflow Adenine nucleotides Glycogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamsson T, Almgren O, Carlsson L (1983) Ischemia induced noradrenaline release in the isolated rat heart: influence of perfusion substrate and duration of ischemia. J. Mol Cell Cardiol 15:821–830CrossRefPubMedGoogle Scholar
  2. 2.
    Alfaro A, Schaible T, Malhotra Y, Yipintsoi T, Scheuer J (1983) Impaired coronary flow and ventricular function in hearts of spontaneously hypertensive rats. Cardiovasc Res 17:553–561CrossRefPubMedGoogle Scholar
  3. 3.
    Bergmeyer HU, Bernt E (1974) UV assay for lactate dehydrogenase with pyruvate and NADH. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Verlag Chemie, Weinheim, pp 574–579CrossRefGoogle Scholar
  4. 4.
    Beyersdorf F, Elert O, Satter P (1980) Determination of maximal ischemic tolerance of the human heart by ultrastructural recording of preischemic degree of myocardial hypertrophy. Ann Thorac Surg 30:358–363CrossRefGoogle Scholar
  5. 5.
    Breisch EA, White FC, Nimmo LE, Bloor CM (1986) Cardiac vasculature and flow during pressure-overload hypertrophy. Am J Physiol 251:H1031-H1037PubMedGoogle Scholar
  6. 6.
    Buckberg GD (1977) Left ventricular subendocardial necrosis. Ann Thorac Surg 24:379–393CrossRefPubMedGoogle Scholar
  7. 7.
    Carlsson L, Abrahamsson T, Almgren O (1986) Release of noradrenaline in myocardial ischemia. Importance of local inactivation by neuronal and extraneuronal mechanisms. J Cardiovasc Pharmacol 8:545–553CrossRefPubMedGoogle Scholar
  8. 8.
    Cooley D, Reul GJ, Wukash DC (1972) Ischemic contracture of the heart: “stone heart”. Am J Cardiol 72:1071–1080Google Scholar
  9. 9.
    Cutilletta AF, Benjamin M, Culpepper WS, Oparil S (1978) Myocardial hypertrophy and ventricular performance in the absence of hypertension in spontaneously hypertensive rats. j Mol Cell Cardiol 10:689–703CrossRefPubMedGoogle Scholar
  10. 10.
    Friberg P, Nordlander M, Lundin S, Folkow B (1985) Effects of ageing on cardiac performance and coronary flow in spontaneously hypertensive and normotensive rats. Acta Physiol Scand 125:1–11CrossRefPubMedGoogle Scholar
  11. 11.
    Frohlich Ed, Pfeffer MA, Pfeffer JM (1981) Systemic hemodynamics and cardiac function in spontaneously hypertensive rats: similarities with essential hypertension. In: Strauer BE (ed) The heart in hypertension. Springer, Berlin Heidelberg New York, pp 53–71CrossRefGoogle Scholar
  12. 12.
    Hallbäck M, Isackson O, Noresson E (1975) Consequences of myocardial structural adaptations on left ventricular compliance and the Frank Starling relationship in spontaneously hypertensive rats. Acta Physiol Scand 94:259–270CrossRefPubMedGoogle Scholar
  13. 13.
    Harmsen E, de Jong JW, Serruys PW (1981) Hypoxanthine production by ischemic heart demonstrated by HPLC of blood purine nucleosides and oxypurines. Clin Chim Acta 115:73–84CrossRefPubMedGoogle Scholar
  14. 14.
    Heyman MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20:55–79CrossRefGoogle Scholar
  15. 15.
    Hottenrott CE, Towers B, Kurkji HR (1973) The hazard of ventricular fibrillation in hypertrophied ventricles during cardiopulmonary bypass. J Thorac Cardiovasc Surg 66:742–749Google Scholar
  16. 16.
    Humphrey SM, Thomson RW, Gavin JB (1984) The influence of the no-reflow phenomenon on reperfusion and reoxygenation damage and enzyme release from anoxic and ischaemic isolated rat hearts. J Mol Cell Cardiol 16:915–930CrossRefPubMedGoogle Scholar
  17. 17.
    Katz AM, Tada M (1972) The “stone heart”: a challenge for the biochemist. Am J Cardiol 29:578–930CrossRefPubMedGoogle Scholar
  18. 18.
    Mirsky I, Pfeffer JM, Pfeffer MA, Braunwald E (1983) The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. Circ Res 53:767–778CrossRefPubMedGoogle Scholar
  19. 19.
    Murray PA, Vatner SF (1981) Reduction of maximal coronary vasodilator capacity in conscious dogs with severe right ventricular hypertrophy. Circ Res 43:25–33CrossRefGoogle Scholar
  20. 20.
    Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Dissociation between adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55:816–824CrossRefPubMedGoogle Scholar
  21. 21.
    Okamoto K, (1972) Cardiac hypertrophy in SHR. In: Okamoto K (ed) Spontaneous hypertension. Its pathogenesis and complications. Springer, Berlin Heidelberg New York, pp 168–169CrossRefGoogle Scholar
  22. 22.
    Peyton RB, van Trigt P, Pellom GL, Jones RN, Jones RN, Sink JD, Weschsler AS (1982) Improved tolerance to ischemia in hypertrophied myocardium by pre-ischemic enhancement of adenosine triphosphate. J Thorac Cardiovasc Surg 84:11–15PubMedGoogle Scholar
  23. 23.
    Pfeffer MA, Pfeffer LM (1985) Left ventricular hypertrophy and pressure generating capacity in aging genetically hypertensive rats. J Cardiovasc Pharmacol 7:S41-S45CrossRefPubMedGoogle Scholar
  24. 24.
    Phelan EL, Simpson FO (1986) Vascular reactivity in genetic models of hypertension. J Hypertens 4:S25-S27Google Scholar
  25. 25.
    Prinzen FW, van der Vusse GJ, Reneman RS (1981) Blood flow distribution in the left ventricular free wall in open-chest dogs. Bas Res Cardiol 76:431–437CrossRefGoogle Scholar
  26. 26.
    Reneman RS, Jagenau AHM, van Gerven W, Dony J, Beirnaert P (1975) The radioactive microsphere method for the assessment of regional myocardial blood flow. Pflügers Arch 353:337–347CrossRefPubMedGoogle Scholar
  27. 27.
    Schaper J, Schwartz F, Flameng W, Hehrlein F (1987) Tolerance to ischemia of hypertrophied human heart during valve replacement. Bas Res Cardiol 73:171–187CrossRefGoogle Scholar
  28. 28.
    Snoeckx LHEH (1987) Ischemia tolerance of the hypertrophied rat heart. PhD Thesis. University of Limburg, LimburgGoogle Scholar
  29. 29.
    Snoeckx LHEH, Schrijen JJW, van Bilsen M, Lammers WJ, van der Nagel T, van der Vusse GJ, Reneman RS (1986) A microcomputer system for heamodynamic measurements in isolated, working hearts. Comp Biol Med 4:301–309CrossRefGoogle Scholar
  30. 30.
    Snoeckx LHEH, van der Vusse GJ, Coumans WA, Willemsen PA, van der Nagel T, Reneman RS (1986) Myocardial function in normal and spontaneously hypertensive rats during reperfusion after a period of global ischaemia. Cardiovasc Res 20:67–75CrossRefPubMedGoogle Scholar
  31. 31.
    Van der Vusse GJ, Reneman RS (1985) Pharmacological intervention in acute myocardial ischemia and reperfusion. Trends Pharmacol Sci 6:76–79CrossRefGoogle Scholar
  32. 32.
    Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50:538–546CrossRefPubMedGoogle Scholar
  33. 33.
    Van der Vusse GJ, Coumans WA, van der Veen FH Drake A, Flameng W, Suy R (1984) ATP, creatine phosphate and glycogen content in myocardial biopsies: markers for the efficacy of cardioprotection during aorta-coronary bypass surgery. Vasc Surg 18:127–134CrossRefGoogle Scholar
  34. 34.
    Wijnants J, van Belle H (1985) Single run high performance liquid chromatography of nucleotides, nucleosides and major purine bases and its application to different tissue extracts. Anal Biochem 144:258–266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • L. H. E. H. Snoeckx
    • 1
  • G. J. van der Vusse
    • 1
  • F. H. van der Veen
    • 1
  • W. A. Coumans
    • 1
  • R. S. Reneman
    • 1
  1. 1.Department of PhysiologyUniversity of LimburgMaastrichtThe Netherlands

Personalised recommendations