Neuro-epithelial bodies in the respiratory mucosa of various mammals

A light optical, histochemical and ultrastructural investigation
  • Joseph M. Lauweryns
  • Marnix Cokelaere
  • Paul Theunynck
Article

Summary

Lungs of fetal, neonatal and adult rabbits and of various other adult mammals were investigated. Several routine and silver staining methods, Falck's fluorescent amine technic and various electron microscopic techniques were performed.

As in the human infant lung (Lauwerynset al., 1972) each of these techniques revealed the occurrence throughout the intrapulmonary airways of intramucosal corpuscles or so-called Neuroepithelial Bodies, composed of more or less parallely oriented, non-ciliated cylindrical cells which reach from the basement membrane to the airway lumen and display a prominent cytoplasmic argyrophilia, a less pronounced argentaffinity and an intense yellow fluorescence. Ultrastructurally, they are granulated, containing mainly two types of dense-cored vesicles of which the first type exhibits a positive reaction for serotonin (technic of Jaim-Etcheverryet al., 1968). They contain intracorpuscular nerve endings which form synaptic end formations upon the granulated cells.

Though the functions of these serotonin producing Neuroepithelial Bodies remain furthermore unsettled, they seem to be related also to the recently reported AFG (Argyrophil, Fluorescent and Granulated) cells (Lauwerynset al., 1969, 1970a) and might be involved in various mucosal bronchial and bronchiolar neurosecretory processes; most probably they are chemo-, stretch- and/or tactile neuroreceptor organs modulated by the central nervous system.

Key words

Lung (mammals) Respiratory mucosa Neuroepithelial Bodies Receptors Light microscopy, histochemistry, electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battaglia, G.: Ultrastructural observations on the biogenic amines in the carotid and aorticabdominal bodies of the human fetus. Z. Zellforsch.99, 529–539 (1969).Google Scholar
  2. Blaschko, H., Comline, R.S., Schneider, F.H., Silver, M., Smith, A. D.: Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature (Lond.)215, 58–59 (1967).Google Scholar
  3. Blaschko, H., Firemark, H., Smith, A. D., Winkler, H.: Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules. Biochem. J.104, 545–549 (1967).Google Scholar
  4. Blümcke, S.: Experimentell-morphologische Untersuchungen über die efferente Bronchusinnervation. I. Plexus peribronchialis. Beitr. path. Anat.137, 239–286 (1968).Google Scholar
  5. Blümcke, S., Dellschau, H., Nasseri, M., Eisele, R., Stadtler, K., Bucherl, E.S.: Die Innervation der Bronchialdrüsen in reimplantierten Hundelungen. Z. Zellforsch.100, 474–486 (1969a).Google Scholar
  6. Blümcke, S., Rode, J., Nasseri, M., Eisele, R., Stadtler, K., Bucherl, E. S.: Der peribronchiale Nervenplexus in reimplantierten Hundelungen. Beitr. path. Anat.138, 272–291 (1969b).Google Scholar
  7. Campenhout, E. Van: Une nouvelle méthode d'imprégnation argentique. Bull. Micr. appl.1, 53–59 (1951).Google Scholar
  8. Chiocchio, S. R., Biscardi, A. M., Tramezzani, J. H.: 5-hydroxytryptamine in the carotid body of the cat. Science158, 790–791 (1967).Google Scholar
  9. Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. J. Histochem. Cytochem.15, 65–78 (1967).Google Scholar
  10. Coupland, R. E.: Electron microscopic observation on the structure of the rat adrenal medulla. J. Anat. (Lond.)99, 231–254 (1965a).Google Scholar
  11. Coupland, R. E.: Electron microscopic observation on the structure of the rat adrenal medulla. II. Normal innervation. J. Anat. (Lond.)99, 255–272 (1965b).Google Scholar
  12. Daly, I., Hebb, C.: Pulmonary and bronchial vascular systems. Their reactions under controlled conditions of ventilation and circulation. London: E. Arnold Ltd. ed. 1966.Google Scholar
  13. Duke, H.: Observations on the effects of hypoxia on the pulmonary vascular bed. J. Physiol. (Lond.)135, 45–51 (1957).Google Scholar
  14. Elftmann, G.: The afferent and parasympathic innervation of the lungs and trachea of the dog. Amer. J. Anat.72, 1–27 (1943).Google Scholar
  15. Elfvin, L.-G.: The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J. Ultrastruct. Res.12, 687–704 (1965).Google Scholar
  16. Falck, B., Owmann, C.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund II 7 (1965).Google Scholar
  17. Ferris, R. M., Viveros, O. H., Kirschner, N.: Effects of various agents on the Mg2+-ATP stimulated incorporation and release of catecholamines by isolated bovine adrenomedullary storage vesicles and on secretion from the adrenal medulla. Biochem. Pharmacol.19, 505–514 (1970).Google Scholar
  18. Fillenz, M.: Innervation of blood vessels of lung and spleen. Bibl. anat. (Basel)8, 56–59 (1967).Google Scholar
  19. Fillenz, M.: Innervation of pulmonary capillaries. Experientia (Basel)25, 842 (1968).Google Scholar
  20. Fillenz, M.: Innervation of pulmonary and bronchial blood vessels of the dog. J. Anat. (Lond.)106, 449–461 (1970).Google Scholar
  21. Finley, T. N., Lenfant, C., Habb, P., Piiper, J., Rahn, H.: Venous admixture in the pulmonary circulation of anesthetized dogs. J. appl. Physiol.15, 418–424 (1960).Google Scholar
  22. Fujita, H., Kataoka, K.: Capillary endothelial cells of the anterior pituitary should be excluded from the reticulo-endothelial system. Light and electron microscopic observations on rabbits and rats. Z. Anat. Entwickl.-Gesch.128, 318–328 (1969).Google Scholar
  23. Greenberg, R., Flack, G., Kolen, C. A.: Localization of acid phosphatases in the stimulated adrenal medullary cell of the rat. J. Cell Biol.31, 42A (1966).Google Scholar
  24. Grimley, P. M., Glenner, G. G.: Ultrastructure of the human carotid body. A perspective on the mode of chemoreception. Circulation37, 648–665 (1968).Google Scholar
  25. Honjin, R.: On the nerve supply of the lung of the mouse, with special reference to the structure of the peripheral vegetative nervous system. J. comp. Neurol.105, 587–625 (1956).Google Scholar
  26. Jaim-Etcheverry, G., Zieher, L. M.: Cytochemistry of 5-hydroxytryptamine at the electron microscope level. I. Study of the specificity of the reaction in isolated blood platelets. J. Histochem. Cytochem.16, 162–171 (1968).Google Scholar
  27. Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A methodological study. (Thesis M.D.) ed. by I. Haeggströms (Stockholm) (1967).Google Scholar
  28. Kirschner, N., Sage, H. J., Smith, W. J.: Mechanism of secretion from the adrenal medulla. II. Release of catecholamines and storage vesicle protein in response to chemical stimulation. Molec. Pharmacol.3, 254–265 (1967).Google Scholar
  29. Larsell, O.: Nerve terminations in the lung of the rabbit. J. comp. Neurol.33, 105–131 (1921).Google Scholar
  30. Larsell, O.: The ganglia, plexuses and nerve terminations of the mammalian lung and pleura pulmonalis. J. comp. Neurol.35, 97–132 (1922).Google Scholar
  31. Lauweryns, J.: L'angioarchitecture du poumon. Arch. Biol. (Liège)75, 771–811 (1964).Google Scholar
  32. Lauweryns, J.: Hyaline membrane disease in newborn infants. Macroscopic, radiographic and light and electron microscopical studies. Human Pathology1, 175–204 (1970b).Google Scholar
  33. Lauweryns, J.: The blood and lymphatic microcirculation of the lung. In: Pathology Annual 1971, ed. by Sheldon C. Sommers, p. 365–415. New York: Appleton-Century-Crofts 1971b.Google Scholar
  34. Lauweryns, J., Peuskens, J.: Argyrophil (kinin and amine producing?) cells in human infant airway epithelium. Life Sci.8, 577–586 (1969).Google Scholar
  35. Lauweryns, J., Peuskens, J.: Neuroepithelial bodies (Neuroreceptor or secretory organs?) in the human infant bronchial and bronchiolar epithelium. Anat. Rec.172, 471–482 (1972).Google Scholar
  36. Lauweryns, J., Peuskens, J., Cokelaere, M.: Argyrophil, fluorescent and granulated (peptide and amine producing?) AFG cells in human infant bronchial epithelium; light and electron microscopic studies. Life Sci.9, 1417–1429 (1970a).Google Scholar
  37. Lauweryns, J., Rosan, R. C.: The unit lobule: a revised concept of the neonatal lung. Perinatal Med. (Basel)32, 259–263 (1971a).Google Scholar
  38. McGaff, C. J., Milnor, W. R.: Effects of serotonin on pulmonary blood volume in the dog. Amer. J. Physiol.202, 957–960 (1962).Google Scholar
  39. Miller, W. S.: The lung, 2nd ed. Baltimore: Thomas ed. 1947.Google Scholar
  40. Moog, E., Fischer, J.: Die Wirkung des Histamins, Serotonins, Bradykinins, Eledoisins und Hypertensins auf isoliert durchströmte Arterien-, Venen- und Bronchienpräparate der Meerschweinchenlunge. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.249, 384–392 (1964).Google Scholar
  41. Morita, E., Chiocchio, S. R., Tramezzani, J. H.: Four types of main cells in the carotid body of the cat. J. Ultrastruct. Res.28, 399–410 (1969).Google Scholar
  42. Niden, A. H., Burrows, B., Barclay, W. R.: Effects of drugs on the pulmonary circulation and ventilation as reflected by changes in the arterial oxygen saturation. Circulat. Res.8, 509–518 (1960).Google Scholar
  43. Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med.95, 297 (1952).Google Scholar
  44. Pearse, A. G. E.: Common cytochemical properties of cells producing polypeptide hormones, with particular reference to calcitonin and the thyroid C cells. Vet. Rec.79, 587–590 (1966).Google Scholar
  45. Pearse, A. G. E.: Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc. roy. Soc. B170, 71–80 (1968).Google Scholar
  46. Poisner, A. M., Douglas, W. W.: A possible mechanism of release of posterior pituitary hormones involving adenosine triphosphate in the neurosecretory granules. Molec. Pharmacol.4, 531–540 (1968).Google Scholar
  47. Poisner, A. M., Trifaro, J. M.: The role of ATP-ase in the release of catecholamines from the adrenal medulla. I. ATP-evoked release of catecholamines, ATP, and protein from isolated chromaffin granules. Molec. Pharmacol.3, 561–571 (1967).Google Scholar
  48. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208 (1963).Google Scholar
  49. Rosan, R. C., Lauweryns, J.: Secretory cells in the premature human lung lobule. Nature (Lond.)232, 60–61 (1971).Google Scholar
  50. Singh, I.: A new argyrophilic method for the rapid staining of entero-chromaffin cells in paraffin sections. Acta Anat. (Basel)59, 290–296 (1964).Google Scholar
  51. Smith, A. D., Winkler, H.: Lysosomes and chromaffin granules in the adrenal medulla. In: Lysosomes in biology and pathology, vol. I, ed. by J. T. Dingle and H. B. Fell. Amsterdam-London: North Holland Publ. Comp. 1969.Google Scholar
  52. Spencer, H.: The innervation of the human lung. J. Anat. (Lond.)98, 599–609 (1964).Google Scholar
  53. Tramezzani, J. H., Chiocchio, S., Wasserman, P.: A technique for light and electron microscopic identification of adrenalin- and noradrenalin storing cells. J. Histochem. Cytochem.12, 890–899 (1964).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Joseph M. Lauweryns
    • 1
  • Marnix Cokelaere
    • 1
  • Paul Theunynck
    • 1
  1. 1.School of Medicine, Laboratory of Pathology and HistologyKatholieke Universiteit te LeuvenLeuvenBelgium

Personalised recommendations