Pflügers Archiv

, Volume 402, Issue 2, pp 166–170 | Cite as

Evidence for the role of calcium in the hydrosmotic response to antidiuretic hormone in frog skin

  • M. Svelto
  • V. Casavola
Transport Processes, Metabolism and Endocrinology; Crinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


Treatment with the calcium ionophore A23187 on either the serosal or mucosal sides of frog skin, strongly inhibits the hydrosmotic response to vasopressin. On the contrary, the hydrosmotic response to 8-br-cAMP is not affected by treatment with the A23187.

Trifluoperazine, a drug which inhibits the Ca2+-calmodulin complex, selectively inhibits vasopressin-induced water transport.

Collectively, our results suggest that an increase in the intracellular concentration of Ca2+, obtained by treatment with the ionophore A23187, interferes with a pre-cAMP step of the hydrosmotic response to the antidiuretic hormone. Calcium ions could regulate adenyl-cyclase activity and consequently intracellular levels of cAMP. This effect may probably involve calmodulin.

Key words

Water transport Antidiuretic hormone Calcium ionophore Frog skin Trifluoperazine Cyclic AMP Calmodulin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bockaert J, Roy C, Jard S (1972) Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells. J Biol Chem 247:7073–7081Google Scholar
  2. 2.
    Bourguet J, Jard S (1964) Un dispositif automatique de mesure et d'enregistrement du flux net d'eau à travers la peau et la vessie des amphibiens. Biochim Biophys Acta 88:442–444Google Scholar
  3. 3.
    Brown D, Grosso A, De Sousa RC (1980) Isoproterenol-induced intramembrane particle aggregation and water flux in toad epidermis. Biochim Biophys Acta 596:158–164Google Scholar
  4. 4.
    Brown D, Grosso A, De Sousa RC (1983) Correlation between water flow and intramembrane particle aggregates in toad epidermis. Am J Physiol 245:C334-C342Google Scholar
  5. 5.
    Campbell BJ, Woodard G, Borberg V (1972) Calcium mediated interactions between the antidiuretic hormone and renal plasma membranes. J Biol Chem 247:6167–6175Google Scholar
  6. 6.
    Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27Google Scholar
  7. 7.
    Chevalier J, Adragna N, Bourguet J, Gobin R (1981) Fine structure of intramembranous particle aggregates in ADH-treated frog urinary bladder and skin. Influence of glutaraldehyde and N-ethylmaleimide. Cell Tissue Res 218:595–606Google Scholar
  8. 8.
    De Sousa RC, Grosso A (1982) Osmotic water flow across the abdominal skin of the toad Bufo marinus: Effect of vasopressin and isoprenaline. J Physiol 329:281–296Google Scholar
  9. 9.
    Grosso A, Cox JA, Malnoe A, De Sousa RC (1982) Evidence for a role calmodulin in the hydrosmotic action of vasopressin in toad bladder. J Physiol (Paris) 78:270–278Google Scholar
  10. 10.
    Hardy MA (1978) Intracellular calcium as a modulator of transepithelial permeability to water in frog urinary bladder. J Cell Biol 76:787–791Google Scholar
  11. 11.
    Humes HD, Simmons CF Jr, Brenner BN (1980) Effect of verapamil on the hydrosmotic response to antidiuretic hormone in toad urinary bladder. Am J Physiol 239:F250-F257Google Scholar
  12. 12.
    Levin RM, Weiss B (1978) Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins. Biochim Biophys Acta 540:197–204Google Scholar
  13. 13.
    Levine SD, Kachadorian WA, Schlondorff D (1980) The effect of hydrazine on transport in toad urinary bladder. Am J Physiol 239:F319-F327Google Scholar
  14. 14.
    Levine SD, Kachadorian WA, Levine DN, Schlondorff D (1981) Effects of trifluoperazine on function and structure of toad urinary bladder. Role of calmodulin in vasopressin-stimulation of water permeability. J Clin Invest 67:662–672Google Scholar
  15. 15.
    Levine SD, Levin DN, Schlondorff D (1983) Calcium flow-independent actions of calcium channel blockers in toad urinary bladder. Am J Physiol 244:C243-C249Google Scholar
  16. 16.
    Parisi M, Bourguet J (1983) Different steps in the regulation by intracellular Ca2+ and pH of the ADH induced hydrosmotic response. Biophys J 41:161AGoogle Scholar
  17. 17.
    Petersen MJ, Edelman IS (1964) Calcium inhibition of the action of vasopressin on the urinary bladder of the toad. J Clin Invest 43:583–594Google Scholar
  18. 18.
    Potter JD, Piascik MT, Wisler PL, Robertson SP, Johnson CL (1980) Calcium dependent regulation of brain and cardiac muscle adenylate cyclase. Ann NY Acad Sci 351:220–231Google Scholar
  19. 19.
    Rasmussen H, Goodman DBP (1977) Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev 57:421–509Google Scholar
  20. 20.
    Ros M, Miller A, Glushkov V (1980) The effect of substituted phenothiazines on membrane-bound protein kinase activity in human erythrocytes. Fed Proc 39:1917Google Scholar
  21. 21.
    Schlondorff D, Kachadorian WA, Levin DN, Levine SD (1981) Evidence for calmodulin dependence of water permeability in toad urinary bladder. Ann NY Acad Sci 372:194–203Google Scholar
  22. 22.
    Taylor A (1981) Role of cytosolic calcium and sodium-calcium exchange in regulation of transepithelial sodium and water absorption. In: Schultz SG (ed) Ion transport by epithelia. Raven Press, New York, pp 233–259Google Scholar
  23. 23.
    Wieseman W, Sinha S, Kalhr S (1977) Effects of Ionophore A23187 on base-line and vasopressin-stimulated sodium transport in the toad bladder. J Clin Invest 59:418–425Google Scholar
  24. 24.
    Wolff DJ, Brostrom CO (1979) Properties and functions of the calcium-dependent regulator protein. In: Greengard P, Robinson G.A. (eds). Advances in cyclic nucleotide research, vol 11. Raven Press, New York, pp 27–88Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Svelto
    • 1
  • V. Casavola
    • 1
  1. 1.Istituto di Fisiologia GeneraleUniversità di BariBarinItaly

Personalised recommendations