Advertisement

Pflügers Archiv

, Volume 403, Issue 1, pp 7–12 | Cite as

Fixed acid and carbon dioxide bohr effects as functions of hemoglobin-oxygen saturation and erythrocyte pH in the blood of the frog,Rana temporaria

  • Rufus M. G. Wells
  • Roy E. Weber
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology

Abstract

Using a thin film, dynamic recording technique, the pH sensitivity of the oxygen equilibrium (Bohr effect) of whole blood in the frogRana temporaria, and its dependence on CO2 and fixed acids and on plasma and erythrocyte pH values were measured. Under standard conditions (20°C,PCO2=14.7 mm Hg, pH=7.65) the oxygen equilibrium could be described by a P50 value of 38 mm Hg andn50 of 1.8. Hill plots of the oxygen equilibria showed increased cooperativity in oxygen binding with increasing saturation (n20 ≃ 1.2,n80 ≃ 4.0). Values of the fixed acid and CO2 Bohr factors ({ie7-1} and {ie7-2}, respectively) were similar at specific saturations (S20, 50, 80) but showed saturation dependence with high values occurring at high saturation. The same statements also hold for the intracellular Bohr factors (derived from the relation between blood P50 and erythrocyte pH) although the values of both {ie7-3} and {ie7-4} now were greater than those related to blood pH.

Key words

Blood and erythrocytic Bohr effects Frog CO2 effect Hill coefficient O2 affinity ATP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnikol WKR, Burkhard O (1979) The fine structure of O2 binding in animals:Rana esculenta. Pflügers Arch 379:R27Google Scholar
  2. Bauer C, Forster M, Gros G, Masca A, Perrella M, Rollema SR, Vogel D (1981) Analysis of bicarbonate binding to crocodilian hemoglobin. J Biol Chem 256:8429–8435Google Scholar
  3. Baumann FH, Baumann R (1977) A comparative study of oxygen transport in bird blood. Respir Physiol 31:333–343Google Scholar
  4. Benesch RE, Benesch R (1974) The mechanism of interaction of red cell organic phosphates with hemoglobin. Adv Protein Chem 28:211–237Google Scholar
  5. Benesch RE, Benesch R, Yung S (1973) Equations for the spectro-photometric analysis of hemoglobin mixtures. Analyt Biochem 55:245–248Google Scholar
  6. Bohr C, Hasselbalch KA, Krogh A (1904) Über einen in biologischer Beziehung wichtigen Einfluß, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand Arch Physiol 16:402–412Google Scholar
  7. Breepoel PM, Kreuzer F, Hazevoet M (1981) Interaction of organic phosphates with bovine hemoglobin. I. Oxylabile and phosphatelabile proton binding. Pflügers Arch 389:219–225Google Scholar
  8. Brittain T, Wells RMG (1983) Oxygen transport in early mammalian development: the molecular physiology of embryonic hemoglobins. Mammalian Development 5:135–154Google Scholar
  9. Cashel M, Lazzarini RA, Kalbacher B (1969) An improved method for thin-layer chromatography of nucleotide mixtures containing 32p-labelled orthophosphate. J Chromatog 40:103–109Google Scholar
  10. Duhm J (1976) Dual effect of 2,3-diphosphoglycerate on the Bohr effects of human blood. Pflügers Arch 363:55–60Google Scholar
  11. Farmer M (1979) The transition from water to air breathing: Effects of CO2 on hemoglobin function. Comp Biochem Physiol 62A: 109–114Google Scholar
  12. Garby L, Robert M, Zaar B (1972) Proton- and carbamino-linked oxygen affinity of normal human blood. Acta Physiol Scand 84:482–492Google Scholar
  13. Grigg GC, Cairncross M (1980) Respiratory properties of the blood ofCrocodylus porosus. Respir Physiol 41:367–380Google Scholar
  14. Hahn CEW, Davis AH, Alberty WJ (1975) Electrochemical improvement of the performance ofP O 2electrodes. Respir Physiol 25:109–133Google Scholar
  15. Hill AV (1910) The possible effect of the aggregation of haemoglobin on its dissociation curves. J Physiol Lond 40:iv-viiGoogle Scholar
  16. Hlastala MP, Woodson RD (1975) Saturation dependency of the Bohr effect: interaction among H+, CO2, and DPG. J Appl Physiol 38:1126–1131Google Scholar
  17. International Committee for Standardization in Haematology (1978) Recommendations for reference method for haemo-globinometry in human blood (ICSH Standard EP 6/2: 1977) and specifications for international haemiglobincyanide reference preparation (ICSH Standard EP 6/3:1977): J Clin Path 31:139–143Google Scholar
  18. Jelkmann W, Bauer C (1980) Oxygen binding properties of caiman blood in the absence and presence of carbon dioxide. Comp Biochem Physiol 65A:331–336Google Scholar
  19. Jensen FB, Weber RE (1982) Respiratory properties of tench blood and hemoglobin; adaptation to hypoxic-hypercapnic water. Molec Physiol 2:235–250Google Scholar
  20. Johansen K, Lykkeboe G, Weber RE, Maloiy GMO (1976) Respiratory properties of blood in awake and estivating lungfish,Protopterus amphibius. Respir Physiol 27:335–345Google Scholar
  21. Johansen K, Lykkeboe G, Kornerup S, Maloiy GMO (1980) Temperature insensitive O2 binding in blood of the tree frogChiromantis petersi. J Comp Physiol 136:71–76Google Scholar
  22. Jokumsen A, Weber RE (1980) Haemoglobin-oxygen binding properties in the blood ofXenopus laevis, with special reference to the influences of aestivation and of temperature and salinity acclimation. J Exp Biol 86:19–37Google Scholar
  23. Kilmartin JV, Rossi-Bernardi L (1973) Interaction of hemoglobin with hydrogen ions, carbon dioxide and organic phosphates. Physiol Rev 53:836–890Google Scholar
  24. Lapennas GN, Lutz PL (1982) Oxygen affinity of sea turtle blood. Respir Physiol 48:59–74Google Scholar
  25. Lapennas GN, Reeves RB (1983) Oxygen affinity of blood of adult domestic chicken and red jungle fowl. Respir Physiol 51: 27–39Google Scholar
  26. Lenfant C, Johansen K (1967) Respiratory adaptations in selected amphibians. Respir Physiol 2:247–260Google Scholar
  27. Lille RS (1978) The effect of arterial-bloodP O 2,P CO 2, and pH on diving bradycardia in the bullfrog,Rana catesbeiana. Physiol Zool 51:340–346Google Scholar
  28. Lutz PL (1980) On the oxygen affinity of bird blood. Am Zool 20:187–198Google Scholar
  29. Lykkeboe G, Johansen K (1978) An O2Hb ‘paradox’ in frog blood? (n-values exceeding 4.0). Respir Physiol 35:119–127Google Scholar
  30. Maginniss LA, Reeves RB (1978) Oxygen equilibrium curves for red cells with mixtures of isohemoglobins: gas transport by whole blood of the adult bullfrog (Rana catesbeiana) as a function of temperature. Physiologist 21:75Google Scholar
  31. Maginniss LA, Song YK, Reeves RB (1980) Oxygen equilibria of ectotherm blood containing multiple hemoglobins. Respir Physiol 42:329–343Google Scholar
  32. Meyer M, Molle JP, Scheid P (1978) Bohr effect induced by CO2 and fixed acid at various levels of O2 saturation in duck blood. Pflügers Arch 376:237–240Google Scholar
  33. Root, RW (1931) The respiratory function of blood of marine fishes. Biol Bull 61:427–456Google Scholar
  34. Severinghaus JW (1966) Blood gas calculator. J Appl Physiol 21:1108–1116Google Scholar
  35. Siggaard-Andersen O (1974) The acid-base status of the blood. Munksgaard, CopenhagenGoogle Scholar
  36. Tazawa M, Mochizuki M, Piiper J (1979a) Blood oxygen dissociation curve of the frogsRana catesbeiana andRana brevipoda. J Comp Physiol 129:111–114Google Scholar
  37. Tazawa M, Mochizuki M, Piiper J (1979b) Respiratory gas transport by the incompletely separated double circulation in the bullfrog,Rana catesbeiana. Respir Physiol 36:77–95Google Scholar
  38. Weber RE, Lykkeboe G (1978) Respiratory adaptations in carp blood. Influence of hypoxia, red cell organic phosphates, divalent cations and CO2. J Comp Physiol 128:127–137Google Scholar
  39. Weingarten JP, Rollema MS, Bauer R, Scheid P (1978) Effects of inositol hexaphosphate on the Bohr effect induced by CO2 and fixed acids in chicken hemoglobin. Pflügers Arch 377:135–141Google Scholar
  40. Wells RMG (1982) Alteration of hemoglobin function by two aliphatic amine buffers. Hemoglobin 6:523–530Google Scholar
  41. Wranne B, Woodson RD, Detter JC (1972) Bohr effect: interaction between H+, CO2, and 2,3-DPG in fresh and stored blood. J Appl Physiol 32:749–754Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Rufus M. G. Wells
    • 1
  • Roy E. Weber
    • 1
  1. 1.Institute of BiologyOdense UniversityOdense MDenmark

Personalised recommendations