Skip to main content
Log in

Studies on the synaptic interconnection between bulbar respiratory neurones of cats

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

In cats anaesthetized with pentobarbital, medullary respiratory neurones of both dorsal and ventral populations were recorded intracellularly with 1 mol·l−1 KCl-electrodes. The neurones were classified according to the projection of their axons to the spinal cord (bulbospinal neurones) or to the vagal nerves (vagal neurones). Those neurones which could not be activated antidromically (NAA-neurones) by either procedure were subdivided into (inspiratory) Rβ-neurones, which were monosynaptically excited by lung stretch receptor afferents, and into inspiratory and expiratory NAA-neurones, which did not receive a direct synaptic input, from these afferents.

All types of neurone investigated revealed postsynaptic activity during both inspiration and expiration. The periods when synaptic activity was minimal were the periods of transition between respiratory phases.

The input resistance of most respiratory neurones varied in parallel with the respiratory cycle. A drastic fall of the input resistance during expiration was observed in Rβ-neurones and in some inspiratory vagal neurones. This was not seen in inspiratory bulbospinal neurones.

In stable intracellular recordings, periodic postsynaptic inhibition was demonstrated in 52 of 53 respiratory neurones by IPSP reversal following chloride injection. Maximal membrane potential then was generally reached during one of the periods of respiratory phase transition. Reasons for the failure of others to demonstrate these IPSPs are presented and discrepancies between other findings and these are discussed. It is concluded that reciprocal inhibition between bulbar respiratory neurones does exist and is a general phenomenon.

It is argued that reciprocal inhibition is the fundamental mechanism underlying respiratory gating of afferent inputs.

The probable existence of recurrent inhibition is inferred from the changes in the pattern of membrane depolarization during the active period of neurones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Araki, T., Ito, M., Oscarsson, O.: Anionic permeability of the inhibitory postsynaptic membrane of motoneurones. Nature189, 65 (1961)

    Google Scholar 

  2. Batsel, H. L., Lines, A. J.: Discharge of respiratory neurons in sneezes resulting from ethmoidal nerve stimulation. Exp. Neurol.58, 410–424 (1978)

    Google Scholar 

  3. von Baumgarten, R.: Koordinationsformen einzelner Ganglienzellen der rhombencephalen Atemzentren. Pflügers Arch. ges. Physiol.262, 573–594 (1956)

    Google Scholar 

  4. von Baumgarten, R., Kanzow, E.: The interaction of two types of inspiratory neurons in the region of the tractus solitarius of the cat. Arch. Ital. Biol.96, 361–373 (1958)

    Google Scholar 

  5. von Baumgarten, R., Nakayama, S.: Spontane und reizbedingte Änderungen der antidromen Errebarkeit von bulbären respiratorischen Nervenzellen der Katze. Pflügers Arch. ges. Physiol.281, 245–258 (1964)

    Google Scholar 

  6. Barrett, J. N., Crill, W. E.: Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones. J. Physiol. (Lond.)239, 325–345 (1974)

    Google Scholar 

  7. Bianchi, A. L.: Localisation et étude des neurones respiratoires bulbaires. Mise en jeu antidromique par stimulation spinale ou vagale. J. Physiol. (Paris)63, 5–40 (1971)

    Google Scholar 

  8. Bradley, G. W., von Euler, C., Marttila, I., Roos, B.: A model of the central and reflex inhibition of inspiration in the cat. Biol. Cybern.19, 105–116 (1975)

    Google Scholar 

  9. Burke, R. E., Fedina, L., Lundberg, A.: Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones. J. Physiol. (Lond.)214, 305–326 (1971)

    Google Scholar 

  10. Burns, B. D., Salmoiraghi, G. C.: Repetitive firing of respiratory neurones during their burst activity. J. Neurophysiol.23, 27–46 (1960)

    Google Scholar 

  11. Camerer, H.: A model of a rhythmic active neuronal network. In: Central-rhythmic and regulation (W. Umbach and H. P. Koepchen, eds.), pp. 78–81. Stuttgart: Hippokrates 1974

    Google Scholar 

  12. Camerer, H.: Populations of excitatory and inhibitory model neurons and rhythmognesis in neuronal networds. Pflügers Arch. Suppl.347, R19 (1974)

    Google Scholar 

  13. Camerer, H., Meesmann, M., Richter, D. W., Röhrig, N.: Reciprocal inhibition of bulbar respiratory neurones in the cat. J. Physiol. (Lond.)284, 80 P (1978)

    Google Scholar 

  14. Camerer, H., Richter, D. W., Röhrig, N., Meesmann, M.: Lung stretch receptor inputs to inspiratory Rβ-neurones: A model for “respiratory gating”. In: Central Nervous Control Mechanisms Breathing, Wenner-Gren Center International Symposia Series (C. v. Euler, ed.), pp. 261–266. Oxford: Pergamon Press (1979)

    Google Scholar 

  15. Clark, F. J., von Euler, C.: On the regulation of depth and rate of breathing. J. Physiol. (Lond.)222, 267–295 (1972)

    Google Scholar 

  16. Cohen, M. I.: Discharge patterns of brain-stem respiratory neurons in relation to carbon dioxide tension. J. Neurophysiol.31, 142–165 (1968)

    Google Scholar 

  17. Cohen, M. I.: Discharge patterns of brain-stem respiratory neurons during Hering-Breuer reflex evoked by lung inflation. J. Neurophysiol.32, 356–374 (1969)

    Google Scholar 

  18. Cohen, M. I., Feldman, J. L.: Models of respiratory phaseswitching. Fed. Proc.36, 2367–2374 (1977)

    Google Scholar 

  19. Cohen, M. I., Piercey, M. F., Gootman, Ph. M., Wolotsky, P.: Respiratory rhythmicity in the cat. Fed. Proc.35, 1967–1974 (1976)

    Google Scholar 

  20. Coombs, J. B., Eccles, J. C., Fatt, P.: The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J. Physiol. (Lond.)130, 326–373 (1955)

    Google Scholar 

  21. Coombs, J. S., Eccles, J. C., Fatt, P.: Excitatory synaptic action in motoneurones. J. Physiol. (Lond.)130, 374–395 (1955)

    Google Scholar 

  22. Denavit-Saubié, M., Riche, D.: Descending input from the pneumotaxic system to the lateral respiratory nucleus of the medulla. An anatomical study with the horseradish peroxidase technique. Neurosci. Lett.6, 121–126 (1977)

    Google Scholar 

  23. von Euler, C., Hayward, J. N., Marttila, I., Wyman, R. J.: Respiratory neurones of the ventrolateral nucleus of the solitary tract of cat: vagal input, spinal connections and morphological identification. Brain Res.61, 1–22 (1973)

    Google Scholar 

  24. von Euler, C., Hayward, J. N., Marttila, I., Wyman, R. J.: The spinal connections of the inspiratory neurones of the ventrolateral nucleus of the cat's tractus solitarius. Brain Res.61, 23–33 (1973)

    Google Scholar 

  25. Feldman, J. L.: A network model for control of inspiratory cutoff by the pneumotaxic center with supportive experimental data in cats. Biol. Cybern.21, 131–138 (1976)

    Google Scholar 

  26. Feldman, J. L., Cohen, M. I., Wolotsky, P.: Phasic pulmonary afferent activity drastically alters the respiratory modulation of neurons in the rostral pontine pneumotaxic center. In: Respiratory centers and afferent systems (B. Duron, ed.), pp. 95–105. Paris: INSERM editions 1976

    Google Scholar 

  27. Feldman, J. L., Cohen, M. I., Wolotsky, P.: Powerful inhibition of pontine respiratory neurons by pulmonary afferent activity. Brain Res.104, 341–346 (1976)

    Google Scholar 

  28. Feldman, J. L., Cohen, M. I.: Relation between expiratory duration and rostral medullary expiratory neuronal discharge. Brain Res.141, 172–178 (1978)

    Google Scholar 

  29. Frank, K.: Basic mechanisms of synaptic transmission in the central nervous system. IRE trans. Med. Electronics ME 6, 85–88 (1959)

    Google Scholar 

  30. Granit, R., Kellerth, J.-O., Williams, T. D.: ‘Adjacent’ and ‘remote’ post-synaptic inhibition in motoneurones stimulated by muscle stretch. J. Physiol. (Lond.)174, 453–472 (1964)

    Google Scholar 

  31. Grossman, Y., Spira, M. E., Parnas, I.: Differential flow of information into branches of a single axon. Brain Res.64, 379–386 (1973)

    Google Scholar 

  32. Hildebrandt, J. R.: Intracellular activity of medullary respiratory neurons. Exp. Neurol.45, 298–313 (1974)

    Google Scholar 

  33. Hildebrandt, J. R.: Gating: a mechanism for selective receptivity in the respiratory center. Fed. Proc.36, 2381–2385 (1977)

    Google Scholar 

  34. Hugelin, A., Cohen, M. I.: The reticular activating system and respiratory regulation in the cat. Ann. N. Y. Acad. Sci.109, 586–603 (1963)

    Google Scholar 

  35. Hukuhara, T., Jr.: Functional organization of brain stem respiratory neurons and rhythmogenesis. In: Central-rhythmic and regulation (W. Umbach and H. P. Koepchen, eds.), pp. 35–49. Stuttgart: Hippokrates 1974

    Google Scholar 

  36. Hukuhara, T., Jr., Saji, Y., Kumadaki, N., Kojima, H., Tamaki, H., Takeda, R., Sakai, F.: Die Lokalisation von atemsynchron entladenden Neuronen in der retikulären Formation des Hirnstammes der Katze unter verschiedenen experimentellen Bedingungen. Naunyn-Schmiedeberg's Arch. Pharmak. Exp. Path.263, 462–484 (1969)

    Google Scholar 

  37. Ito, M., Kostyuk, P. G., Oshima, T.: Further study on anion permeability of inhibitory post-synaptic membrane of cat motoneurones. J. Physiol. (Lond.)164, 150–156 (1962)

    Google Scholar 

  38. Kellerth, J.-O.: Aspects on the relative significance of pre- and postsynaptic inhibition in the spinal cord. In: Structure and function of inhibitory neuronal mechanisms (C. von Euler, S. Skoglund and S. Söderberg, eds.), pp. 197–212. Oxford: Pergamon Press 1968

    Google Scholar 

  39. Knox, C. K.: Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol.36, 284–295 (1973)

    Google Scholar 

  40. Koepchen, H. P., Klüssendorf, D., Philipp, U.: Mechanisms of central transmission of respiratory reflexes. Acta Neurobiol. Exp.33, 287–299 (1973)

    Google Scholar 

  41. Krämer, A., Sommer, D., Rosin, P., Klüssendorf, D., Koepchen, H. P.: Ventilatory and neuronal responses to microstimulation in bulbar expiratory neuronal population. Proc. Int. Union Physiol. Sci. Paris13, 1207 (1977)

    Google Scholar 

  42. Kreuter, F., Richter, D. W., Camerer, H., Senekowitsch, R.: Morphological and electrical description of medullary respiratory neurons of the cat. Pflügers Arch.372, 7–16 (1977)

    Google Scholar 

  43. Krupp, P., Bianchi, C. P., Suarez-Kurtz, G.: On the local anesthetic effect of barbiturates. J. Pharm. Pharmacol.21, 763–768 (1969)

    Google Scholar 

  44. Lipski, J., McAllen, R. M., Spyer, K. M.: The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarius. J. Physiol. (Lond.)269, 797–810 (1977)

    Google Scholar 

  45. Llinás, R., Terzuolo, C. A.: Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms upon flexor motoneurons. J. Neurophysiol.28, 413–422 (1965)

    Google Scholar 

  46. McAllen, R. M., Spyer, K. M.: The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J. Physiol. (Lond.)258, 187–204 (1976)

    Google Scholar 

  47. Marckwald, M.: Die Atenbewegungen und deren Innervation beim Kaninchen. Z. Biol.23, 149–283 (1887)

    Google Scholar 

  48. Merrill, E. G.: Finding a respiratory function for the medullary respiratory neurones. In: Essays on the nervous system (R. Bellairs and E. G. Gray, eds.), pp. 451–486. Oxford: Clarendon Press 1974

    Google Scholar 

  49. Merrill, E. G.: Absence of correlations between lateral expiratory neurones in cat. J. Physiol. (Lond.)276, 33P-34P (1978)

    Google Scholar 

  50. Mitchell, R. A., Berger, A. J.: Neuronal regulation of respiration. Am. Rev. Respir. Dis.111, 206–224 (1975)

    Google Scholar 

  51. Mitchell, R. A., Herbert, D. A.: The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res.75, 345–349 (1974)

    Google Scholar 

  52. Mitchell, R. A., Herbert, D. A.: Synchronized high frequency synaptic potentials in medullary respiratory neurones. Brain Res.75, 350–355 (1974)

    Google Scholar 

  53. Mulloney, B., Selverston, A.: Antidromic action potentials fail to demonstrate known interactions between neurons. Science177, 69–72 (1972)

    Google Scholar 

  54. Nelson, J. R.: Single unit activity in medullary respiratory centers of cat. J. Neurophysiol.22, 590–598 (1959)

    Google Scholar 

  55. Pitts, R. F.: Organization of the respiratory center. Physiol. Rev.26, 609–630 (1946)

    Google Scholar 

  56. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol.30, 1138–1168 (1967)

    Google Scholar 

  57. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., Frank, K.: Dentritic location of synapses and possible mechanisms for the monosynaptic EPSP in mononeurons. J. Neurophysiol.30, 1169–1193 (1967)

    Google Scholar 

  58. Richter, D. W., Heyde, F.: Reciprocal innervation of medullary inspiratory and expiratory neurons. Pflügers Arch.347, R39 (1974)

    Google Scholar 

  59. Richter, D. W., Seller, H.: Baroreceptor effects on medullary respiratory neurones of the cat. Brain Res.86, 168–171 (1975)

    Google Scholar 

  60. Richter, D. W., Heyde, F., Gabriel, M.: Intracellular recordings from different types of medullary respiratory neurons of the cat. J. Neurophysiol.38, 1162–1171 (1975)

    Google Scholar 

  61. Richter, D. W., Camerer, H., Röhrig, N.: Medullary inspiratory interneurons receiving a monosynaptic input from lung stretch receptors. Pflügers Arch. (Suppl.)373, R75 (1978)

    Google Scholar 

  62. Richter, D. W., Camerer, H., Sonnhof, U.: Changes in extracellular potassium concentration during the spontaneous activity of medullary respiratory neurones. Pflügers Arch.376, 139–149 (1978)

    Google Scholar 

  63. Salmoiraghi, G. C., Burns, B. D.: Localization and patterns of discharge of respiratory neurones in brain-stem of cat. J. Neurophysiol.23, 2–13 (1960)

    Google Scholar 

  64. Salmoiraghi, G. C., Burns, B. D.: Notes on mechanism of rhythmic respiration. J. Neurophysiol.23, 14–26 (1960)

    Google Scholar 

  65. Smith, T. G., Wuerker, R. B., Frank, K.: Membrane impedance changes during synaptic transmission in cat spinal motoneurons. J. Neurophysiol.30, 1072–1096 (1967)

    Google Scholar 

  66. Tauc, L., Hughes, G. M.: Modes of initiation and propagation of spikes in the branching axon of molluscan central neurons. J. Gen. Physiol.46, 533–549 (1963)

    Google Scholar 

  67. Werman, R., Carlen, P. L.: Unusual behavior of the Ia EPSP in cat spinal motoneurons. Brain Res.112, 395–401 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, D.W., Camerer, H., Meesmann, M. et al. Studies on the synaptic interconnection between bulbar respiratory neurones of cats. Pflugers Arch. 380, 245–257 (1979). https://doi.org/10.1007/BF00582903

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582903

Key words

Navigation