Advertisement

Molecular and General Genetics MGG

, Volume 147, Issue 3, pp 315–323 | Cite as

Properties of plasmids constructed by the in vitro insertion of DNA fromRhizobium leguminosarum orProteus mirabilis into RP4

  • A. E. Jacob
  • Janet M. Cresswell
  • R. W. Hedges
  • J. N. Coetzee
  • J. E. Beringer
Article

Summary

Plasmids have been constructed by insertion of DNA fromRhizobium leguminosarum orProteus mirabilis into RP4 (an R factor of group P). Such recombinant plasmids retain the wide host range of the parental plasmid, being as efficiently transmissible as the unmodified RP4 and are stably maintained in rapidly growing cultures.

The recombinant plasmids, even though each contained a DNA sequence absolutely identical with that of the host strain, are no more efficient at mobilizing the transfer of chromosomal genetic information from that host strain than was unmodified RP4. We therefore conclude that an unknown factor must be essential in the process of chromosome mobilization and rate limiting for that process.

Keywords

Genetic Information Recombinant Plasmid Host Range Host Strain Unknown Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.L., Jollick, J.D.: Phage restricted transfer of a promiscuousPseudomonas plasmid toCaulobacter. Abstracts of the 75th Annual Meeting of the American Society for Microbiology, p. 104 (1975)Google Scholar
  2. Bachmann, B.J.: Pedigrees of some mutant strains ofEscherichia coli K12. Bact. Rev.36, 525–557 (1972)Google Scholar
  3. Barth, P.T., Datta, N., Hedges, R.W., Grinter, N.J.: Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J. Bact.125, 800–810 (1976)Google Scholar
  4. Barth, P.T., Grinter, N.J.: Comparison of the deoxyribonucleic acid molecular weights and homologies of plasmids conferring linked resistance to streptomycin and sulfonamides. J. Bact.120, 618–630 (1974)Google Scholar
  5. Beringer, J.E.: R factor transfer inRhizobium leguminosarum. J. gen. Microbiol.84, 188–198 (1974)Google Scholar
  6. Beringer, J.E.: The genetics ofRhizobium and free-living nitrogen-fixing bacteria. Heredity35, 433–434 (1975)Google Scholar
  7. Bertani, G., Weigle, J.J.: Host controlled variation in bacterial viruses. J. Bact.65, 113–121 (1953)Google Scholar
  8. Boucher, C., Bergeron, B., Barate de Bertalmio, M., Denarié, J.: Introduction of bacteriophage Mu-1 intoPseudomonas solanacearum andRhizobium meliloti using the R factor RP4. J. gen. Microbiol. (in the press)Google Scholar
  9. Broda, P., Meacock, P., Achtman, M.: Early transfer of genes determining transfer functions by some Hfr strains inEscherichia coli K12. Molec. gen. Genet.116, 336–347 (1972)Google Scholar
  10. Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J.62, 315–323 (1956)Google Scholar
  11. Clowes, R.C.: Molecular structure of bacterial plasmids. Bact. Rev.36, 361–405 (1972)Google Scholar
  12. Clowes, R.C., Moody, E.E.M.: Chromosomal transfer from recombination deficient strains ofEscherichia coli K12. Genetics53, 717–726 (1966)Google Scholar
  13. Cohen, S.N., Chang, A.C.Y., Boyer, H.W., Helling, R.B.: Construction of biologically functional bacterial plasmidsin vitro. Proc. nat. Acad. Sci. (Wash.)70, 3240–3244 (1973)Google Scholar
  14. Coetzee, J.N.: Genetics of theProteus group. Ann. Rev. Microbiol.26, 23–54 (1972)Google Scholar
  15. Coetzee, J.N.: Properties ofProteus and Providence strains harbouring recombinant plasmids between Plac, Rldrd19 or R447b. J. gen. Microbiol.80, 119–130 (1974a)Google Scholar
  16. Coetzee, J.N.: High frequency transduction of kanamycin resistance inProteus mirabilis. J. gen. Microbiol.84, 285–296 (1974b)Google Scholar
  17. Coetzee, J.N.: Chromosome transfer inProteus mirabilis mediated by a hybrid plasmid. J. gen. Microbiol.86, 133–146 (1975)Google Scholar
  18. Coetzee, J.N., Datta, N., Hedges, R.W.: R factors fromProteus rettgeri. J. gen. Microbiol.72, 543–552 (1972)Google Scholar
  19. Coetzee, J.N., Sacks, T.G.: Transduction of streptomycin resistance inProteus mirabilis. J. gen. Microbiol.23, 445–455 (1960)Google Scholar
  20. Datta, N., Hedges, R.W.: Host ranges of R factors. J. gen. Microbiol.70, 453–460 (1972)Google Scholar
  21. Datta, N., Hedges, R.W., Shaw, E.J., Sykes, R.B., Richmond, M.H.: Properties of an R factor fromPseudomonas aeruginosa. J. Bact.108, 1244–1249 (1971)Google Scholar
  22. Davidson, N., Deonier, R.C., Hu, S., Ohtsubo, E.: Electron microscope heteroduplex studies of sequence relations among plasmids ofEscherichia coli. X. Deoxyribonucleic acid sequence organization of F and F-primes, and the sequences involved in Hfr formation. Microbiology-1974 (American Society for Microbiology), ed. D. Schlessinger, p. 56-65 (1975)Google Scholar
  23. Dennison, S.: Naturally occurring R factor, derepressed for Pilus Synthesis, belonging to the same compatibility groups as the sex factor F ofEscherichia coli K 12. J. Bact.109, 416–422 (1972)Google Scholar
  24. Dennison, S., Baumberg, S.: Conjugal behaviour of N plasmids inEscherichia coli K12. Molec. gen. Genet.138, 323–331 (1975)Google Scholar
  25. Evenchik, Z., Stacey, K.A., Hayes, W.: Ultraviolet induction of chromosome transfer by autonomous sex factors inEscherichia coli. J. gen. Microbiol.56, 1–14 (1969)Google Scholar
  26. Falkow, S., Guerry, P., Hedges, R.W., Datta, N.: Polynucleotide sequence relationships among plasmids of the I compatibility complex. J. gen. Microbiol.85, 65–76 (1974)Google Scholar
  27. Falkow, S., Ryman, IR., Washington, O.: Deoxyribonucleic acid base composition ofProteus and Providence organisms. J. Bact.83, 1318–1321 (1962)Google Scholar
  28. Gibbins, A.M., Gregory, K.F.: Relatedness amongRhizobium andAgrobacterium species determined by three methods of nucleic acid hybridization. J. Bact.111, 129–141 (1972)Google Scholar
  29. Giles, K.W., Myers, A.: An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature (Lond.)206, 93 (1965)Google Scholar
  30. Grabow, W.O., Smit, J.A.: Methionine synthesis inProteus mirabilis. J. gen. Microbiol.46, 47–57 (1967)Google Scholar
  31. Hedges, R.W., Jacob, A.E.: Transposition of ampicillin resistance from RP4 to other replicons. Molec. gen. Genet.132, 31–40 (1974)Google Scholar
  32. Holloway, B.W., Richmond, M.H.: R factors used for genetic studies in strains ofPseudomonas aeruginosa and their origin. Genet. Res.21, 103–105 (1973)Google Scholar
  33. Jacob, A.E., Grinter, N.J.: Plasmid RP4 as a vector replicon in genetic engineering. Nature (Lond.)255, 504–506 (1975)Google Scholar
  34. Jacob, A.E., Hobbs, S.J.: Conjugal transfer of plasmid-borne multiple antibiotic resistance inStreptococcus faecalis var.zymogenes. J. Bact.117, 360–372 (1974)Google Scholar
  35. Jacob, F., Wollman, E.L.: Sexuality of the genetics of bacteria. New York and London: Academic Press 1961Google Scholar
  36. Jobanputra, R.S., Datta, N.: Trimethoprim resistance factors in enterobacteria from clinical specimens. J. med. Microbiol.7, 169–177 (1974)Google Scholar
  37. Johnston, A.W.B., Beringer, J.E.: Identification of theRhizobium strains in pearoot nodules using genetic markers. J. gen. Microbiol.87, 343–350 (1975)Google Scholar
  38. Kornberg, A., Zimmerman, S.B., Kornberg, S.R., Josse, J.: Enzymatic synthesis of deoxyribonucleic acid. VI. Influence of bacteriophage T2 on the synthetic pathway in host cells. Proc. nat. Acad. Sci. (Wash.)45, 772–785 (1959)Google Scholar
  39. Low, K.B.:Escherichia coli K12 F-prime factors, old and new. Bact. Rev.36, 587–607 (1972)Google Scholar
  40. Mandel, M., Higa, A.: Calcium dependent bacteriophage DNA infection. J. molec. Biol.53, 159–162 (1970)Google Scholar
  41. Marmur, J.: A procedure for the isolation of DNA from microorganisms. J. molec. Biol.3, 208–218 (1961)Google Scholar
  42. Martin, R.R., Sokatch, J.R., Unger, L.: Formation ofEscherichia coli Hfr strains by integrative suppression with aPseudomonas R factor. Abstracts of the 75th Annual Meeting of the American Society for Microbiology, p. 104 (1975)Google Scholar
  43. Morrow, J.F., Cohen, S.N., Chang, A.C.Y., Boyer, H.W., Goodman, H.W., Helling, R.B.: Replication and transcription of eukaryotic DNA inEscherichia coli. Proc. nat. Acad. Sci. (Wash.)71, 1743–1747 (1974)Google Scholar
  44. Olsen, R.H., Gonzalez, C.:Escherichia coli gene transfer to unrelated bacteria by a histidine operon—RPl drug resistance plasmid complex. Biochem. biophys. Res. Commun.59, 377–385 (1974)Google Scholar
  45. Olsen, R.H., Shipley, P.: Host range and properties of thePseudomonas aeruginosa R factor R1822. J. Bact.113, 772–780 (1973)Google Scholar
  46. Pittard, J., Adelburg, E.A.: Gene transfer by F′ strains ofEscherichia coli K12. II. Interaction between Famerogenote and chromosome during transfer. J. Bact.85, 1402–1408 (1963)Google Scholar
  47. Pittard, J., Ramakrishnan, T.: Gene transfer by F′ strains ofEscherichia coli. IV. Effect of a chromosomal deletion on chromosome transfer. J. Bact.88, 367–373 (1964)Google Scholar
  48. Scaife, J., Gross, J.D.: The mechanism of chromosome mobilization by an F-prime factor inEscherichia coli K12. Genet. Res.4, 328–331 (1963)Google Scholar
  49. Scaife, J., Pekhov, A.P.: Deletion of chromosomal markers in association with F-prime factor formation inEscherichia coli K12. Genet. Res.5, 495–498 (1964)Google Scholar
  50. Sharp, P.A., Hsu, M.-T., Ohtsubo, E., Davidson, N.: Electron microscope heteroduplex studies of sequence relation among plasmids ofEscherichia coli. I. Structure of F-prime factors. J. molec. Biol.71, 471–497 (1972)Google Scholar
  51. Stanisich, V.A., Holloway, B.W.: Chromosome transfer inPseudomonas aeruginosa mediated by R factors. Genet. Res.17, 169–172 (1971)Google Scholar
  52. Tanaka, T., Weisblum, B.: Construction of a colicin El-R factor composite plasmidin vitro: means for amplification of deoxyribonucleic acid. J. Bact.121, 354–362 (1975)Google Scholar
  53. Towner, K.J., Vivian, A.: RP4-mediated conjugation inAcinetobacter calcoaceticus. J. gen. Microbiol.23, 355–360 (1976)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • A. E. Jacob
    • 1
  • Janet M. Cresswell
    • 2
  • R. W. Hedges
    • 1
  • J. N. Coetzee
    • 2
  • J. E. Beringer
    • 3
  1. 1.Department of BacteriologyRoyal Postgraduate Medical SchoolLondonEngland
  2. 2.Department of MicrobiologyUniversity of PretoriaRepublic of South Africa
  3. 3.John Innes InstituteNorwichEngland

Personalised recommendations