Pflügers Archiv

, Volume 377, Issue 2, pp 119–124 | Cite as

The relationship of mechanicalVmax to myosin ATPase activity in rabbit and marmot ventricular muscle

  • Burt B. Hamrell
  • Robert B. Low
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology


Papillary muscle mechanics and ventricular myosin calcium-activated ATPase activity were measured in the same heart as a function of temperature (8–28°) in rabbits and marmots, in order to examine further the hypothesis that the velocity of cardiac muscle shortening at zero load (Vmax) is correlated with myosin ATPase activity. There was a similarQ10 forVmax in each muscle type, as measured with isotonic afterloaded quick-releases at 30–33% time-to-peak tension; the calcium activated ATPase of myosin in the two muscle types also was similar. The least squares linear regression of rabbitVmax on calcium-activated myosin ATPase activity was the same as in the marmot, so all the data were pooled to yield a linear regression (Y=0.47+3.82X) with a high correlation between the two variables [r=0.95,P<0.01 (ANOV)]. Furthermore, the correlation proved to be predictive of cardiacVmax and myosin ATPase activity levels in other experiments where these two measurements decreased below normal as a result of hypertrophic growth. Consequently, the quantitative relationship betweenVmax and myosin ATPase defined here may prove to be predictive of the ability of cardiac muscle to release bond energy.

Key words

Vmax Myosin ATPase Force-velocity Temperature Myocardium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpert, N. R., Hamrell, B. B., Halpern, W.: Mechanical and biochemical correlates of cardiac hypertrophy. Circ. Res.34/35, (Suppl. II), 71–82 (1974)Google Scholar
  2. 2.
    Bárány, M.: ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol.50, 197–218 (1967)Google Scholar
  3. 3.
    Bárány, M., Bárány, K. Reckard, T., Volpe, A.: Myosin of fast and slow muscle of the rabbit. Arch. Biochem. Biophys.109, 185–191 (1965)Google Scholar
  4. 4.
    Bodem, R., Sonnenblick, E. H.: Deactivation of contraction by quick releases in the isolated papillary muscle of the cat: effects of lever damping, caffeine, and tetanization. Cire Res.34, 214–225 (1974)Google Scholar
  5. 5.
    Bodem, R., Sonnenblick, E. H.: Mechanical activity of mammalian heart muscle: variable onset, species differences, and the effect of caffeine. Am. J. Physiol.228, 250–261 (1975)Google Scholar
  6. 6.
    Carey, R. A., Bove, A. A., Coulson, R. L., Spann, J. F.: Cardiac muscle maximum myosin ATPase activity correlated with maximum velocity of papillary muscle shortening. Physiologist19, 148 (1976) (Abstract)Google Scholar
  7. 7.
    Cronin, R., Armour, J. A., Randall, W. C.: Function of the in situ papillary muscle in the canine left ventricle. Circ. Res.25, 67–75 (1969)Google Scholar
  8. 8.
    Delcayre, C., Swynghedauw, B. A.: A comparative study of heart myosin: ATPase and light subunits from different species. Pflügers Arch.355, 39–47 (1975)Google Scholar
  9. 9.
    Edman, K. A. P., Nielsson, E.: Relationships between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand.85, 488–500 (1972)Google Scholar
  10. 10.
    Edman, K. A. P., Mattiazzi, A., Nilsson, E.: The influence of temperature on the force-velocity relationship in rabbit papillary muscle. Acta Physiol Scand.90, 750–756 (1974)Google Scholar
  11. 11.
    Fiske, C. M., Subbarow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem.66, 375–379 (1925)Google Scholar
  12. 12.
    Gaetjens, E., Bárány, K., Bailin, A., Oppenheimer, H., Bárány, M.: Studies on the low molecular weight protein components in rabbit skeletal myosin. Arch. Biochem. Biophys.123, 82–96 (1968)Google Scholar
  13. 13.
    Hamrell, B. B., Alpert, N. R.: The discrete mechanical characteristics of hypertrophied rabbit cardiac muscle in the absence of congestive heart failure: the contractile and series eleastic elements. Circ. Res.40, 20–25 (1977)Google Scholar
  14. 14.
    Henderson, A. H., Brutsaert, D. L., Parmley, W. W., Sonnenblick, E. H.: Myocardial mechanics in papillary muscles of the rat and cat. Am. J. Physiol.217, 1273–1279 (1969)Google Scholar
  15. 15.
    Henderson, A. H., Craig, R. J., Sonnenblick, E. H., Urschel, C. H.: Species differences in intrinsic myocardial contractility. Proc. Soc. Exp. Biol. Med.134, 930–932 (1970)Google Scholar
  16. 16.
    Hill, A. V.: Myothermic experiments on the frog's gastrocnemius. Proc. Roy. Soc. [Biol.]109, 267–303, 1931Google Scholar
  17. 17.
    Jewell, B. R., Rovell, J.: Influence of previous mechanical events on the contractility of isolated cat papillary muscle. J. Physiol. (Lond.)235, 715–740 (1973)Google Scholar
  18. 18.
    Johannsson, M., Nilsson, E.: Acid-base changes and excitation-contraction coupling in rabbit myocardium. I. Effects on isometric tension development at different contraction frequencies. Acta Physiol. Scand.93, 295–309 (1975)Google Scholar
  19. 19.
    Katz, A. M.: Contractile proteins of the heart. Physiol. Rev.50, 63–158 (1970)Google Scholar
  20. 20.
    Katz, A. M., Repke, D. I., Rubin, B. B.: The adenosinetriphosphatase activity of cardiac myosin. Comparison of enzymatic activities and activation by actin of dog cardiac, rabbit cardiac, rabbit white skeletal and rabbit red skeletal myosins. Circ. Res.19, 611–621 (1966)Google Scholar
  21. 21.
    Low, R. B., Hamrell, B. B.: Structural and functional comparison of myosin from the rabbitOryctolagus cuniculus and the marmotMarmota monax. Comp. Biochem. Physiol.51B, 29–35 (1975)Google Scholar
  22. 22.
    Parmley, W. W., Chuck, L., Sonnenblick, E. H.: Relation ofV max to different models of cardiac muscle. Circ. Res.30, 34–43 (1972)Google Scholar
  23. 23.
    Paulus, W. J., Clais, V. A., Brutsaert, D. L.: Physiological loading of isolated mammalian cardiac muscle. Circ. Res.39, 42–53 (1976)Google Scholar
  24. 24.
    Sarkar, S., Sreter, F. A., Gergely, J.: Light chains of myosins from white, red, and cardiac muscles. Proc. Natl. Acad. Sci. USA68, 946–950 (1971)Google Scholar
  25. 25.
    Shiverick, K. T., Hamrell, B. B., Alpert, N. R.: Structural and functional properties of myosin associated with the development of compensatory cardiac hypertrophy. J. Mol. Cell Cardiol.8, 837–851 (1976)Google Scholar
  26. 26.
    Snedecor, G. W.: Statistical Methods, pp. 122–193, 237–290 Ames: Iowa State College Press 1956Google Scholar
  27. 27.
    Sonnenblick, E. H.: Force-velocity relations in mammalian heart muscle. Am. J. Physiol.202, 931–939 (1962)Google Scholar
  28. 28.
    Sreter, F. A., Seidel, J. C., Gergely, J.: Studies on myosin from red and white skeletal muscles of the rabbit. J. Biol. Chem.241, 5772–5776 (1966)Google Scholar
  29. 29.
    Starr, R., Offer, G.: Polypeptide chains of intermediate molecular weight in myosin preparations. FEBS Lett.15, 40–44 (1971)Google Scholar
  30. 30.
    Weber, A., Murray, J. M.: Molecular control mechanisms in muscle contraction. Physiol. Rev.53, 612–673 (1973)Google Scholar
  31. 31.
    Weeds, A. G.: Light chains of myosin. Nature233, 1362–1364 (1969)Google Scholar
  32. 32.
    Weeds, A. G., Pope, B.: Chemical studies on light chains from cardiac and skeletal muscle myosin. Nature234, 85–88 (1971)Google Scholar
  33. 33.
    Yeatman, L. A., Jr., Parmley, W. W., Sonnenblick, E. H.: Effects of temperature on series elasticity and contractile element motion in heart muscle. Am. J. Physiol.217, 1030–1034 (1969)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Burt B. Hamrell
    • 1
  • Robert B. Low
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations