The ultrastructure of the nuclear envelope of amphibian oocytes

IV. on the chemical nature of the nuclear pore complex material
  • U. Scheer


In order to investigate the chemical composition of the nuclear pore complexes isolated nuclei from matureXenopus laevis oocytes were manually fractioned into nucleoplasmic aggregates and the nuclear envelopes. The whole isolation procedure takes no more than 60–90 sec, and the pore complexes of the isolated envelopes are well preserved as demonstrated by electron microscopy. Minor nucleoplasmic and cytoplasmic contaminations associated with the isolated nuclear envelopes were determined with electron microscopic morphometry and were found to be quantitatively negligible as far as their mass and nucleic acid content is concerned. The RNA content of the fractions was determined by direct phosphorus analysis after differential alkaline hydrolysis. Approximately 9% of the total nuclear RNA of the matureXenopus egg was found to be attached to the nuclear envelope. The nonmembranous elements of one pore complex contain 0.41×10−16 g RNA. This value agrees well with the content estimated from morphometric data. The RNA package density in the pore complexes (270×10−15 g/μ3) is compared with the nucleolar, nucleoplasmic and cytoplasmic RNA concentration and is discussed in context with the importance of the pore complexes for the nucleo-cytoplasmic transport of RNA-containing macromolecules.

Additionally, the results of the chemical analyses as well as of the3H-actinomycin D autoradiography and of the nucleoprotein staining method of Bernhard (1969) speak against the occurence of considerable amounts of DNA in the nuclear pore complex structures.

Key words

Nuclear envelope Amphibian oocytes Nuclear pore complex Chemical nature Electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, H. T., Smith, G. H.: Nuclear pores: the pore-annulus relationship in thin section. J. Ultrastruct. Res.30, 558–588 (1970).Google Scholar
  2. Babbage, P. S., King, P. E.: Post-fertilization functions of annulate lamellae in the periphery of the egg ofSpirorbis borealis (Daudin). Z. Zellforsch.107, 15–22 (1970).Google Scholar
  3. Bajer, A., Molé-Bajer, J.: Formation of spindle fibers, kinetochore orientation, and behavior of the nuclear envelope during mitosis in endosperm. Chromosoma (Berl.)27, 448–484 (1969).Google Scholar
  4. Bal, A. K., Jubinville, F., Cousineau, G. H., Inoué, S.: Origin and fate of annulate lamellae inArbacia punctulata eggs. J. Ultrastruct. Res.25, 15–28 (1968).Google Scholar
  5. Beams, H. W., Mueller, S.: Effects of ultracentrifugation on the interphase nucleus of somatic cells with special reference to the nuclear envelope-chromatin relationship. Z. Zellforsch.108, 297–308 (1970).Google Scholar
  6. Beaulaton, J.: Sur l'action d'enzymes au niveau des pores nucléaires et d'autres structures des cellules sécrétices prothoraciques incluses en épon. Z. Zellforsch.89, 453–461 (1968).Google Scholar
  7. Berezney, R., Funk, L. K., Crane, F. L.: The isolation of nuclear membrane from a largescale preparation of bovine liver nuclei. Biochim. biophys. Acta (Amst.)203, 531–546 (1970).Google Scholar
  8. Bernhard, W.: A new staining procedure for electron microscopical cytology. J. Ultrastruct. Res.27, 250–265 (1969).Google Scholar
  9. Bornens, M. M.: Méthode d'isolement de la membrane nucléaire de fois de rat. C. R. Acad. Sci. (Paris)266, 596, 599 (1968).Google Scholar
  10. Brown, D. D.: The nucleolus and synthesis of ribosomal RNA during oogenesis and embryogenesis ofXenopus laevis. Nat. Cancer Inst. Monogr.23, 297–309 (1966).Google Scholar
  11. Brown, D. D., Dawid, I. B.: Specific gene amplification in oocytes. Science160, 272–280 (1968).Google Scholar
  12. Brown, D. D., Littna, E.: Synthesis and accumulation of low molecular weight RNA during embryogenesis ofXenopus laevis. J. molec. Biol.20, 95–112 (1966).Google Scholar
  13. Callan, H. G.: Chromosomes and nucleoli of the axolotl,Amblystoma mexicanum. J. Cell Sci.1, 85–108 (1966).Google Scholar
  14. Callan H. G., Tomlin, S. G.: Experimental studies on amphibian oocyte nuclei: investigation of the structure of the nuclear membrane by means of the electron microscope. Proc. roy. Soc. B137, 367–378 (1950).Google Scholar
  15. Caspersson, T., Schultz, J.: Ribonucleic acids in both nucleus and cytoplasm, and the function of the nucleolus. Proc. nat. Acad. Sci. (Wash.)26, 507–515 (1940).Google Scholar
  16. Clérot, J. C.: Mise en évidence par cytochimie ultrastructurale de l'émissions de protéines par le noyau d'auxocytes de batraciens. J. Microscopie7, 973–992 (1968).Google Scholar
  17. Comings, D. E.: The rationale for an ordered arrangement of chromatin in the interphase nucleus. Amer. J. hum. Genet.20, 440–460 (1968).Google Scholar
  18. Comings, D. E., Okada, T. A.: Association of chromatin fibers with the annuli of the nuclear membrane. Exp. Cell Res.62, 293–302 (1970a).Google Scholar
  19. Comings, D. E., Okada, T. A.: Association of nuclear membrane fragments with metaphase and anaphase chromosomes as observed by whole mount electron microscopy. Exp. Cell Res.63, 62–68 (1970).Google Scholar
  20. Conway, C. M., Metz, C. B.: Cytochemical demonstration of RNA in heavy bodies in sea urchin eggs. J. Cell Biol.47, 40A (1970).Google Scholar
  21. Daniels, E. W., Roth, L. E.: Electron microscopy of mitosis in a radiosensitive giant amoeba. J. Cell Biol.20, 75–84 (1964).Google Scholar
  22. Davidson, E. H., Allfrey, V. G., Mirsky, A. E.: On the RNA synthesized during the lampbrush phase of amphibian oogenesis. Proc. nat. Acad. Sci. (Wash.)52, 501–508 (1964).Google Scholar
  23. Dawid, I. B.: Evidence for the mitochondrial orogin of frog egg cytoplasmic DNA. Proc. nat. Acad. Sci. (Wash.)56, 269–276 (1966).Google Scholar
  24. Deumling, B.: Thesis, University of Freiburg i. Br. (1972).Google Scholar
  25. DuPraw, E. J.: The organization of nuclei and chromosomes in honeybee embryonic cells. Proc. nat. Acad. Sci. (Wash.)53, 161–168 (1965).Google Scholar
  26. DuPraw, E. J., Bahr, G. F.: The dry mass of individual nuclear annuli. J. Cell Biol.43, 32A (1969).Google Scholar
  27. Ebstein, B. S.: Tritiated actinomycin D as a cytochemical label for small amounts of DNA. J. Cell Biol.35, 709–713 (1967).Google Scholar
  28. Ebstein, B. S.: The distribution of DNA within the nucleoli of the amphibian oocyte as demonstrated by tritiated actinomycin D radioautography. J. Cell Sci.5, 27–44 (1969).Google Scholar
  29. Edström, J. E., Gall, J. G.: The base composition of RNA in lampbrush chromosomes, nucleoli, nuclear sap, and cytoplasm ofTriturus oocytes. J. Cell Biol.19, 279–284 (1963).Google Scholar
  30. Edström, J. E., Grampp, W., Schor, N.: The intracellular distribution and heterogeneity of RNA in starfish oocytes. J. Cell Biol.11, 549–557 (1961).Google Scholar
  31. Flaumenhaft, E.: The structure of some amphibian oocyte nuclear envelopes. Anat. Rec.136, 194 (1960).Google Scholar
  32. Franke, W. W.: On the universality of nuclear pore complex structure. Z. Zellforsch.105, 405–429 (1970a).Google Scholar
  33. Franke, W. W.: Nuclear pore flow rate. Naturwissenschaften57, 44–45 (1970b).Google Scholar
  34. Franke, W. W., Deumling, B., Ermen, B., Jarasch, E. D., Kleinig, H.: Nuclear membranes from mammalian liver. I. Isolation procedure and general characterization. J. Cell Biol.46, 379–395 (1970).Google Scholar
  35. Franke, W. W., Falk, H.: Appearance of nuclear pore complexes after Bernhard's staining procedure. Histochemie24, 266–278 (1970).Google Scholar
  36. Franke, W. W., Krien, S., Brown, R. M.: Simultaneous glutaraldehyde-osmiumtetroxide fixation with postosmication. Histochemie19, 162–164 (1969).Google Scholar
  37. Franke, W. W., Scheer, U.: The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation. I. The mature oocyte. J. Ultrastruct. Res.30, 288–316 (1970a).Google Scholar
  38. Franke, W. W., Scheer, U.: The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation. II. The immature oocyte and dynamic aspects. J. Ultrastruct. Res.30, 317–327 (1970b).Google Scholar
  39. Franke, W. W., Scheer, U.: Some structural differentiations in the HeLa cell: heavy bodies, annulate lamellae, and cotte de maille endoplasmic reticulum. Cytobiol.4, 317–329 (1971).Google Scholar
  40. Gall, J. G.: Techniques for the study of lampbrush chromosomes. In: Methods in Cell Physiology, ed. by D. M. Prescott, vol. 2, p. 37–60. New York and London: Academic Press 1966.Google Scholar
  41. Gall, J. G.: Nuclear RNA of the salamander oocyte. Nat. Cancer Inst. Monogr.23, 475–488 (1966).Google Scholar
  42. Ganion, L. R., Kessel, R. G.: Autoradiographic studies on oocytes ofNecturus maculosus. J. Cell Biol.27, 135–136A (1965).Google Scholar
  43. Gansen, P. van, Schram, A.: Ultrastructure et cytochimie ultrastructurale de la vésicule germinative et du cytoplasme périnucléaire de l'oocyte mûr deXenopus laevis. J. Embryol. exp. Morph.20, 375–389 (1968).Google Scholar
  44. Gillis, J. M., Wibo, M.: Accurate measurement of the thickness of ultrathin sections by interference microscopy. J. Cell Biol.49, 947–949 (1971).Google Scholar
  45. Hanocq-Quertier, J., Baltus, E., Ficq, A., Brachet, J.: Studies on the DNA ofXenopus laevis oocytes. J. Embryol. exp. Morph.19, 273–282 (1968).Google Scholar
  46. Harris, P.: Electron microscope study of mitosis in sea urchin blastomeres. J. Cell Biol.11, 419–431 (1961).Google Scholar
  47. Hinsch, G. W.: Possible role of intranuclear membranes in nuclear-cytoplasmic exchange in spider crab oocytes. J. Cell Biol.47, 531–535 (1970).Google Scholar
  48. Hotta, Y., Bassel, A.: Molecular size and circularity of DNA cells of mammals and higher plants. Proc. nat. Acad. Sci. (Wash.)53, 356–362 (1965).Google Scholar
  49. Izawa, M., Allfrey, V. G., Mirsky, A. E.: The relationship between RNA synthesis and loop structure in lampbrush chromosomes. Proc. nat. Acad. Sci. (Wash.)49, 544–551 (1963).Google Scholar
  50. Kartenbeck, J., Zentgraf, H., Scheer, U., Franke, W. W.: The nuclear envelope in freezeetching. Adv. Anat. Embryol. Cell Biol.45, 1–55 (1971).Google Scholar
  51. Kashnig, D. M., Kasper, C. B.: Isolation, morphology, and composition of the nuclear membrane from rat liver. J. biol. Chem.244, 3786–3792 (1969).Google Scholar
  52. Kessel, R. G.: Annulate lamellae. J. Ultrastruct. Res., Suppl.10, 1–82 (1968).Google Scholar
  53. King, R. C.: The meiotic behavior of theDrosophila oocyte. Int. Rev. Cytol.28, 125–168 (1970).Google Scholar
  54. Kleinig, H., Lempert, U.: Phospholipid analysis on a micro scale. J. Chromatogr.53, 595–597 (1970).Google Scholar
  55. Koshiba, K., Smetana, K., Busch, H.: On the ultrastructural cytochemistry of nuclear pores in Novikoff hepatoma cells. Exp. Cell Res.60, 199–209 (1970).Google Scholar
  56. Kroon, A. M.: DNA and RNA from mitochondria and chloroplasts. In: Handbook of molecular cytology, ed. by A. Lima-De-Faria, p. 943–971. Amsterdam-London: North Holland Publ. Comp. 1969.Google Scholar
  57. LaCour, L. F., Wells, B.: The nuclear pores of early meiotic prophase nuclei of plants. Z. Zellforsch.123, 178–194 (1972).Google Scholar
  58. Lane, N. J.: Spheroidal and ring nucleoli in amphibian oocytes. Patterns of uridine incorporation and fine structural features. J. Cell Biol.35, 421–434 (1967).Google Scholar
  59. Loening, U. E., Jones, K. W., Birnstiel, M. L.: Properties of the ribosomal RNA precursor inXenopus laevis: comparison to the precursor in mammals and in plants. J. molec. Biol.45, 353–366 (1969).Google Scholar
  60. MacGregor, H. C.: Nucleolar DNA in oocytes ofXenopus laevis. J. Cell Sci.3, 437–444 (1968).Google Scholar
  61. MacGregor, H. C., Moon, S. J.: Some measurements on amphibian oocyte nucleoli. Z. Zellforsch.122, 273–282 (1971).Google Scholar
  62. Mairy, M., Denis, H.: Recherches biochimiques sur l'oogénèse. I. Synthèse et accumulation du RNA pendant l'oogénèse du crapaud sud-africainXenopus laevis. Develop. Biol.24, 143–165 (1971).Google Scholar
  63. Maul, G. G.: The relationship of nuclear pores to chromatin. J. Cell Biol.47, 132A (1970).Google Scholar
  64. Maul, G. G.: On the octagonality of the nuclear pore complex. J. Cell Biol.51, 558–563 (1971).Google Scholar
  65. Mentre, P.: Présence d'acide ribonucléique dans l'anneau osmiophile et le granule central des pores nucléaires. J. Microscopie8, 51–68 (1969).Google Scholar
  66. Merriam, R. W.: On the fine structure and composition of the nuclear envelope. J. biophys. biochem. Cytol.11, 559–570 (1961).Google Scholar
  67. Miller, O. L.: Structure and composition of peripheral nucleoli of salamander oocytes. Nat. Cancer Inst. Monogr.23, 53–66 (1966).Google Scholar
  68. Mizuno, N. S., Stoops, C. E., Sinha, A. A.: DNA synthesis associated with the inner membrane of the nuclear envelope. Nature New Biol.229, 22–24 (1971).Google Scholar
  69. Monneron, A., Bernhard, W.: Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res.27, 266–288 (1969).Google Scholar
  70. Moses, M. J.: The relation between the axial complex of meiotic prophase chromosomes and chromosome pairing in a salamander (Plethodon cinereus). J. biophys. biochem. Cytol.4, 633–638 (1958).Google Scholar
  71. Moule, Y.: Biochemical characterization of the components of the endoplasmic reticulum in rat liver cell. In: Structure and function of the endoplasmic reticulum in animal cells, ed. by C. F. Grand, p. 1–12. London and New York: Academic Press 1968.Google Scholar
  72. Nass, M. M. K.: Mitochondrial DNA: advances, problems and goals. Science165, 25–35 (1969).Google Scholar
  73. Perkowska, E., MacGregor, H. C., Birnsteil, M. L.: Gene amplification in the oocyte nucleus of mutant and wild-typeXenopus laevis. Nature (Lond.)217, 649–650 (1968).Google Scholar
  74. Roberts, K., Northcote, D. H.: Structure of the nuclear pore in higher plants. Nature (Lond.)228, 385–386 (1970).Google Scholar
  75. Rogers, M. E.: Ribonucleoprotein particles in the amphibian oocyte nucleus. J. Cell Biol.36, 421–432 (1968).Google Scholar
  76. Scharrer, B., Wurzelmann, S.: Ultrastructural studies on nuclear-cytoplasmic relationships in oocytes of the African lungfish,Protopterus aethiopicus. I. Nucleolo-cytoplasmic pathways. Z. Zellforsch.96, 325–343 (1969).Google Scholar
  77. Scheer, U.: Strukturen und Funktionen der Porenkomplexe in der Amphibien-Eizelle. Thesis, University of Freiburg i. Br., p. 1–174 (1970).Google Scholar
  78. Scheer, U.: The ultrastructure of the nuclear envelope of amphibian oocytes. V. Functional aspects: the nuclear pore flow rate of ribosomal RNA during oogenesis ofXenopus laevis. Develop. Biol., in press (1972).Google Scholar
  79. Scheer, U., Franke, W. W.: Negative staining and adenosine triphosphatase activity of annulate lamellae of newt oocytes. J. Cell Biol.42, 519–533 (1969).Google Scholar
  80. Schmidt, G., Thannhauser, S. J.: A method for the determination of DNA, RNA and phosphoproteins in animal tissues. J. biol. Chem.161, 83–89 (1945).Google Scholar
  81. Silverman, L., Schreiner, B., Glick, D.: Measurement of thickness within sections by quantitative electron microscopy. J. Cell Biol.40, 768–772 (1969).Google Scholar
  82. Sitte, P.: Einfaches Verfahren zur stufenlosen Gewebe-Entwässerung für die elektronenmikroskopische Präparation. Naturwissenschaften49, 402–403 (1962).Google Scholar
  83. Soyer, M. O.: Structure du noyau desBlastodinium (Dinoflagellés parasites). Division et condensation chromatique. Chromosoma (Berl.)33, 70–114 (1971).Google Scholar
  84. Spirin, A. S.: Informosomes. Europ. J. Biochem.10, 20–35 (1969).Google Scholar
  85. Stelly, N., Stevens, B. J., André, J.: Etude cytochimique de la lamelle dense de l'enveloppe nucléaire. J. Microscopie9, 1015–1028 (1970).Google Scholar
  86. Stevens, A. R.: Machinery for exchange across the nuclear membrane. In: The control of nuclear activity, ed. by L. Goldstein, p. 189–211. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1967.Google Scholar
  87. Stevens, B. J., Swift, H.: RNA transport from nucleus to cytoplasm inChironomus salivary glands. J. Cell Biol.31, 55–77 (1966).Google Scholar
  88. Sved, J. A.: Telomere attachment of chromosomes. Some genetical and cytological consequences. Genetics53, 747–756 (1966).Google Scholar
  89. Swanson, R. F., Dawid, I. B.: The mitochondrial ribosome ofXenopus laevis. Proc. nat. Acad. Sci. (Wash.)66, 117–124 (1970).Google Scholar
  90. Szollosi, D.: Extrusion of nucleoli from pronuclei of the rat. J. Cell Biol.25, 545–562 (1965).Google Scholar
  91. Wischnitzer, S.: The ultrastructure of the nucleus of the developing amphibian egg. In: Advances in morphogenesis, ed. by M. Abercrombie and J. Brachet, vol. 6, p. 173–198. New York and London: Academic Press 1967.Google Scholar
  92. Wolstenholme, D. R., Dawid, I. B.: Circular mitochondrial DNA fromXenopus laevis andRana pipiens. Chromosoma (Berl.)20, 445–449 (1967).Google Scholar
  93. Wolstenholme, D. R., Dawid, I. B.: A size difference between mitochondrial DNA molecules of urodele and anuran amphibia. J. Cell Biol.39, 222–228 (1968).Google Scholar
  94. Zentgraf, H., Deumling, B., Jarasch, E. D., Franke, W. W.: Nuclear membranes and plasma membranes from hen erythrocytes. I. Isolation, characterization and comparison. J. biol. Chem.246, 2986–2995 (1971).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • U. Scheer
    • 1
  1. 1.Department of Cell Biology, Institute of Biology IIUniversity of Freiburg i. Br.Germany

Personalised recommendations